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Abstract

In this paper, I evaluate the properties and performance of band spectral estimators

applied to business cycle models. Band spectral methods are widely used to study frequency-

dependent relationships among time series. In business cycle research, the Whittle likelihood

approximation enables researchers to estimate models using only the frequencies those models

are best suited to represent, such as the business cycle frequencies. Using the medium-scale

model of Angeletos et al. (2018) as a data-generating process, I conduct a Monte Carlo study

to assess the finite-sample properties of the band spectral maximum likelihood estimator

(MLE) and compare its performance with that of the full-spectrum and exact time-domain

MLEs. The results show that the band spectral estimator exhibits considerable biases and

efficiency losses for most estimated parameters. Moreover, both the full-information and

band spectral Whittle estimators perform poorly in contrast to the time domain estimator,

which successfully recovers all model parameters. I demonstrate how these findings can

be understood through the theoretical properties of the underlying model, and describe

simple tools and diagnostics that can be used to detect potential problems in band spectral

estimation for a wide class of macroeconomic models.
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1 Introduction

Following the pioneering work of Hannan (1963), band spectral methods have become an

important tool for analyzing dynamic models on the basis of a restricted band of frequencies.

The rationale for band spectral estimation of macroeconomic models is straightforward: a model

should not be forced to fit data it is not designed to explain. In particular, if a theoretical model

lacks the features and mechanisms to account for data movements in some parts of the frequency

range, those frequencies should be excluded from estimation. Failure to do so would distort

parameter estimates by forcing them to accommodate empirical features outside the model’s

intended scope. Therefore, for example, a business cycle model known a priori to be ill-suited

for explaining high- and low-frequency phenomena in the data should be estimated using only

data components with business cycle periodicities. In other words, one should use band spectral

estimation methods.

Band-spectral estimation via likelihood methods relies on Whittle (1953) approximation of the

Gaussian likelihood in the frequency domain.1 Hansen and Sargent (1980) showed how to apply

the Whittle likelihood to estimate dynamic rational expectations models, with early examples

of this approach provided by Altug (1989) and Christiano and Vigfusson (2003). Hansen and

Sargent (1993) were also the first to leverage the Whittle likelihood for band spectral estimation

of macroeconomic models, with a focus on understanding the implications of using seasonally

adjusted data. Diebold et al. (1998) proposed a more general estimation approach where

frequencies might be assigned different weights. The aim is to mitigate model misspecification

and the band spectral maximum likelihood estimator, which they call Band-MLE, arises as a

special case of their framework. Cogley (2001) also employed a band spectral likelihood approach

to exclude low frequencies in the estimation of models with uncertain trend specifications.

Despite the compelling reasons for using band spectral estimation, particularly given the

literature’s focus on explaining business cycle phenomena, macroeconomic models are predom-

inantly estimated in the time domain, incorporating information from all frequencies. Some

notable exceptions are Qu and Tkachenko (2012a,b), Sala (2015), and, most recently, Angeletos

et al. (2018), who employ likelihood-based estimation in the frequency domain using a subset of

frequencies.

The main purpose of this paper is to evaluate the properties and performance of the band

spectral estimator when applied to modern business cycle models. To that end, I conduct a

Monte Carlo simulation study using the medium-scale dynamic stochastic general equilibrium

(DSGE) model of Angeletos et al. (2018) as the data-generating process (DGP). Following

the existing literature, I construct the band spectral maximum likelihood estimator (MLE) by

restricting the Whittle likelihood to frequencies from the business cycle range of the spectrum.

The finite-sample properties of the estimator are compared to those of the full-spectrum Whittle

MLE and the time domain Gaussian MLE. The aim of this comparison is three-fold: First, since

the Whittle likelihood approximates the exact Gaussian likelihood, it may exhibit finite-sample

distortions, especially for highly persistent processes (see Hansen and Sargent (1980)). Since

1The band spectral MLE can be interpreted as a full information analogue of the band spectral linear regression
proposed by Hannan (1963), and popularized in economics by Engle (1974, 1978).
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no exact likelihood equivalent of the band spectral estimator exists in the current literature,

comparing the properties of the full-information time and frequency domain estimators helps

assess the nature and magnitude of the distortions involved in using the Whittle approximation.

Second, comparing the band spectral estimator to the efficient full-information one provides a

benchmark for gauging the efficiency consequences of restricting information only to the business

cycle part of the spectrum. Such a comparison is subject to the obvious caveat that the reason for

using the band spectral estimator in the first place are the discrepancies between the model and

the data in some parts of the spectrum. In the simulations, the model of Angeletos et al. (2018)

is treated as the true DGP across all frequencies. Under this setup, the interpretation of the

discrepancies is that, in the real world, the unobserved model-consistent data are contaminated

by low- and high-frequency components, such as trends, measurement noise, etc, which are not

accounted for in the model. In other words, this is framed as a missing data problem, where

we compare the efficiency of the feasible band spectral estimator to that of the infeasible oracle

estimator – one that represents a situation without missing data.2 Third, knowing how important,

under the true DGP, frequencies outside the business cycle range are is useful because it reveals

the potential consequences of estimating misspecified models. The more informative a part of

the spectrum, the more severe the distortions from misspecification in those frequencies. And,

conversely, the effect of misspecification are small when the contaminated frequencies contribute a

negligible amount of information. From this perspective, the simulation analysis is highly relevant

since, as pointed out earlier, time domain estimation uses information from all frequencies and

remains the dominant approach in business cycle research.

The simulation results are presented and discussed in Section 4, following an outline of the

Angeletos et al. (2018) model in Section 2 and a brief introduction to the Whittle likelihood

in Section 3. I find that both Whittle likelihood-based estimators exhibit severe biases under

the original parametrization of the ACD model, with many parameters showing biases several

orders of magnitude larger than the time domain MLE. I show that the cause of the bias is the

extreme near–unit root levels of persistence of the model variables. Under an alternative less

persistent parametrization, the biases of the full-spectrum and band spectral estimators decrease

substantially, though remaining higher than the time domain estimator’s bias. Furthermore, I find

that band spectral estimation entails a significant efficiency loss compared to the full-information

case, often exceeding 100% of the true values. This suggests that frequencies from the lower

and higher end of the spectrum contain relevant information for all parameters, and, for some

parameters, the information is essential. It also raises the question of whether we can predict the

relative importance of different parts of the spectrum using the theoretical model alone without

resorting to computationally expensive simulations. I explore this issue in Sections 5 and 6,

where I examine the utility of the expected Fisher information matrix (FIM) and the implied

Cramér-Rao lower bounds (CRLBs) as predictors of estimation uncertainty. In Section 5, I

compare FIM-based predictions with the Monte Carlo simulation results for the full information

estimator and the BC-frequency-only band spectral estimator. I find that the analytical approach

2This is analogous to treating seasonal frequencies as missing when estimating a model that abstracts from
seasonality with data that exhibits seasonal patterns. Then, the oracle estimator is the one using seasonally-adjusted
data. Insofar as such data is available, the oracle estimator is in fact feasible.
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is generally highly accurate, both qualitatively (identifying which parameters may suffer greater

or lesser information loss) and quantitatively (predicting the magnitude of the efficiency losses).

In Section 6, I investigate whether the information missing from the BC frequency band is located

mainly in the low or the high frequencies. I also show how the FIM formalism can be used to

explain why certain frequencies are more informative than others. The analytical predictions are

again validated against MC simulations and the results confirm the usefulness of the approach as

a framework for understanding the distribution of parameter information across frequencies.

Consistent with common practice in structural macroeconomics, Whittle likelihood-based

estimation is typically implemented within a Bayesian framework. This is the case in Qu and

Tkachenko (2012a) and Sala (2015), who considered full- and band spectral estimation of DSGE

models, and in Angeletos et al. (2018), who performed only band spectral estimation. Bayesian

methods are also employed in Plagborg-Møller (2019), who developed a method for estimating

structural impulse response functions using the full-spectrum Whittle likelihood. In contrast,

the analysis in this paper is pursued entirely in a frequentist setting. This is appropriate since

both issues I investigate – the quality of the Whittle approximation and the efficiency costs of

the band spectral approach – relate solely to the likelihood function and may be obscured by

introducing a prior distribution on the estimated parameters. Both Qu and Tkachenko (2012a)

and Sala (2015) found that the estimation results are very different depending on whether

estimation uses all or a subset of frequencies, in particular those with business cycle periodicities.

They interpreted these differences as evidence of model misspecification, arguing that both

approaches should yield similar results absent misspecification. In particular, Sala (2015, p.220)

writes “In general, if no misspecification is present, parameter estimates will not depend on the

frequencies used. Estimation on frequency bands would just be less efficient than estimation

over the entire frequency domain.” My simulation results challenge this interpretation, showing

that finite-sample distortions in the Whittle likelihood alone can produce substantially different

parameter estimates, even without misspecification. Furthermore, I show that, by introducing

prior information about the estimated parameters, one may greatly underestimate the loss of

sample information in the band spectral case. In frequentist settings this occurs when theoretical

parameter restrictions – common in structural estimation – become binding due to the limited

amount of information in the sample. While this also affects the full information case, the impact

is generally much stronger when estimation is based on a subset of frequencies. Similar issues

arise in fully Bayesian settings, where the relative importance of prior and sample information can

be very different in the band spectral compared to the full information case. This is important

to keep in mind as prior distributions are rarely tailored to the applications at hand and are

typically specified to be in line with the rest of the literature, i.e. for models estimated in the

time domain using all frequencies.3

This paper contributes to a small number of studies using simulations to investigate the

properties of the MLE when applied to the estimation of DSGE models. Consistent with the

findings of Iskrev (2010a), Schmitt-Grohé and Uribe (2199), Iskrev and Ritto (2016), and Adolfson

3Qu and Tkachenko (2012a) estimate the Smets and Wouters (2007) model using the same prior distribution.
Sala (2015) describes the prior specification as “standard in the literature”, referencing Justiniano et al. (2010).
Similarly, Angeletos et al. (2018) describe their choice of priors as “broadly in line with the literature”.
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et al. (2019), I show that the time-domain MLE successfully recovers model parameters when the

model is correctly specified for all frequencies. McDonald and Shalizi (2022) reach the opposite

conclusion, stating that “even with centuries’ worth of data, the model remains poorly estimated”.

None of these works considers estimation in the frequency domain. To my knowledge, Sala (2015)

is the only previous study to investigate the finite-sample properties of the Whittle likelihood

approach when applied to the estimation of DSGE models. As in this paper, he conducts Monte

Carlo experiments comparing the time domain and frequency domain MLE. In addition to the

business cycle frequency-only estimator, Sala (2015) also considers estimation using all except the

low frequencies and all except the high frequencies.4 His findings are remarkably different from

mine. In particular, Sala (2015, Table 1, Appendix B) shows that the bias of the full-spectrum

Whittle MLE is comparable to, and even slightly lower than, that of the time domain estimator.

Furthermore, although he reports larger, on average, estimation uncertainty for the band spectral

estimators, there are several instances where some of these estimators are more efficient than the

full information ones. Consequently, he concludes (Sala (2015, footnote 13)) that “the frequency

domain approximation, both on the whole spectrum and on subsets of frequencies, is remarkably

good”. Since no further details or discussion of these results are provided, it remains unclear

whether the discrepancy with the present study’s findings stems from differences in the properties

of the data generating process used in Sala (2015), or variations in the design of the experiment,

such as the number of replications, choice of optimizers, and so on.5

Due to high computation costs, Monte Carlo-style analysis is rarely performed when estimating

structural macro models. Yet another contribution of this paper is demonstrating the usefulness

of the CRLBs as predictors of the information content of a sample. In the context of time domain

MLE, similar results were presented in Iskrev (2010a) where I run Monte Carlo simulations with

the Smets and Wouters (2007) model to compare predicted and estimated parameter uncertainty.

Likewise, Iskrev and Ritto (2016) found that using FIM-based measures to compare the relative

informativeness of different subsets of observables yields an identical ranking to the one obtained

from Monte Carlo simulations. This paper extends the analysis to the frequency domain with the

aim of quantifying the relative informativeness of different subsets of frequencies. In this respect,

the analysis relates to the question of whether different subsets of frequencies contain sufficient

information to identify model parameters. Frequency domain conditions for local and global

identification are provided in Qu and Tkachenko (2012a) and Qu and Tkachenko (2017). Their

condition for local identification, in particular, is equivalent to the asymptotic FIM being of

full rank.6 Finding that the FIM-based approach provides a reliable alternative to Monte Carlo

simulations is significant because its negligible computational costs enable comparative analyses

across various scenarios, such as different parameterizations, selections of observed variables,

frequency bands, sample sizes, and more. This exploration can be conducted before to taking

models to data, thus helping researchers design their empirical investigations.

4Sala (2015) defines the business cycle range to include frequencies with period between 4 and 32 quarters,
whereas, following Angeletos et al. (2018), I include only frequencies with period between 6 and 32 quarters.

5One potentially important factor is the different number of Monte Carlo replications – 100 in Sala (2015)
whereas I use 1000.

6The condition in Qu and Tkachenko (2012b) is more general and allows for singular models. For non-singular
models, such as the one of Angeletos et al. (2018), the equivalence holds.
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2 The Model

The model is taken from Angeletos et al. (2018) (henceforth ACD). There are two reasons for

choosing this model. First, it is similar in size and shares many features with other estimated

medium-scale DSGE models in the contemporary literature. These include: a neoclassical

growth core augmented with sticky prices, habit formation in consumption, adjustment costs in

investment, monetary policy following a Taylor rule, and a number of exogenous shocks driving

business cycle fluctuations. What sets ACD apart is the departure from the standard assumption

of rational expectations and common information about the state of the economy. In their

model, agents’ beliefs about the expectations of other agents (higher-order beliefs) are subject to

autonomous variation, called “confidence shock”, which creates divergence between the two forms

of beliefs. This generates exogenous variations in agents’ expectations of the economic outcomes

in the short-run, without altering their medium or long-run expectations, or their expectations

of exogenous fundamentals at any horizon. ACD show that embedding this mechanism into

an otherwise standard New Keynesian business cycle model improves the match with observed

macroeconomic patterns. Estimating the model with U.S. data, they find that the confidence

shock accounts for more than half of the volatility in the main macro aggregates at business

cycle frequencies.

The second reason for selecting the ACD model is that the authors explicitly state that

their model describes business cycle phenomena only, acknowledging its lack of features and

mechanisms needed to account for low and high frequency properties of empirical time series.

For this reason, the model is estimated in the frequency domain using only the business cycle

frequencies. While focusing on business cycle fluctuations is common in the literature, models

are typically estimated in the time domain using all frequencies. The few exceptions that use

frequency domain estimation, such as Sala (2015) and Qu and Tkachenko (2012b), work with

models not specifically designed to fit only the business cycle part of the spectrum.

The main methodological contribution of ACD is demonstrating how to introduce higher-

order belief dynamics into macroeconomic models in a tractable way. Like most DSGE models,

estimation uses a linear state space representation derived from log-linearizing the equilibrium

conditions around steady state. For reference, the linearized equilibrium conditions of the ACD

model are presented below. For more details on the model and solution method, readers should

consult the original publication.

2.1 Linearized equilibrium conditions

The economy consists of a continuum of islands and a mainland. Each island contains a

representative household and a continuum of monopolistically competitive firms producing

differentiated commodities using household-supplied labor and capital. These commodities

combine through a CES aggregator into an island-specific composite good, which in turn enters

mainland final good production through another CES aggregator. The final good is used for both

consumption and investment. The log-linearized equilibrium conditions, with variables expressed

as log-deviations from steady-state values, are summarized as follows:
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Optimal consumption allocation

Eit [ζ
c
t + νnit] = ζct −

cit − bCt−1

1− b
+ Eit [sit + ϱYt + (1− ϱ)yit − nit] , (2.1)

where cit and Ct are consumption on island i and aggregate consumption, yit and Yt are the

quantity of the final good produced in island i and aggregate output, nit is hours worked,

sit denotes the realized markup in island i, and ζct is a preference shock. The parameter ν

determines the inverse labor supply elasticity, while b and ϱ denote, respectively, the degree of

habit persistence and the degree of substitutability across the islands’ composite goods in the

production of the final good.

Optimal investment decision

Eit [λit + qit] = Eit [λit+1 + β(1− δ)qit+1 + (1− β(1− δ))(sit+1 + ϱYt+1

+ (1− ϱ)yit+1 − uit+1 − kit+1)] (2.2)

where qit is the price of capital, uit is the rate of capital utilization, and λit is the marginal utility

of consumption, given by

λit = ζct −
cit − bCt−1

1− b
(2.3)

The parameter β denotes the intertemporal discount rate in the utility function of the households,

and δ denotes the depreciation rate.

Optimal bond holdings decision

Rt = ζct − (1 + ν)nit − sit − ϱYt − (1− ϱ)yit − E′
it[λit+1 − πit+1] (2.4)

where Rt denotes the nominal interest rate and πit denotes the inflation rate in island i.

Equilibrium price of capital

qit = (1 + β)φιit + φιt−1 − βφE′
it ιit+1 + ζIPt − ζITt (2.5)

where iit denotes the level of investment, ζIPt denotes the investment-specific technology shock,

ζITt denotes the investment demand shock, and φ denotes a parameter governing investment

adjustment costs.

Production function

yit = ζAt + α(uit + kit) + (1− α)nit (2.6)

where kit denotes the local capital stock, ζAt denotes the level of aggregate TFP, and α represents
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the share of capital in the production function. The capital accumulation equation is

kit+1 = (1− δ)kit + δ(ζITt + ιit), (2.7)

and level of TFP is the sum of a permanent (apt ) and a transitory (aτt ) component:

ζAt = apt + aτt , (2.8)

Resource constraint

ϱyt + (1− ϱ)yit = xit + αuit, (2.9)

where xit denotes GDP on island i, given by

xit = sccit + (1− sc − sg)(ζ
IP
t + ιit) + sgGt, (2.10)

and Gt, sc and sg denote the level of government spending and the steady-state ratios of

consumption and government spending to output. To ensure the existence of a balanced growth

path, government spending is defined as

Gt = ζgt +
1

1− α
apt −

α

1− α
ζIPt (2.11)

where ζgt denotes the government spending shock.

Equilibrium utilization

ζIPt +
1

1− ψ
uit = sit + ϱyt + (1− ϱ)yit − kit, (2.12)

where ψ denotes the capital utilization elasticity parameter.

Inflation rate

πit =
(1− χ)(1− βχ)

χ (1 + χ(1− β))
sit +

βχ(1− χ)πt + βχE′ πit+1

χ (1 + χ(1− β))
, (2.13)

where Πit denotes the aggregate inflation rate, and (1− χ) denotes the probability that a firm

resets its price in a given period.

Monetary policy rule

Rt = κRRt−1 + (1− κR)(κππit + κy(xit − xFit)) + ζmt (2.14)

where xFit denotes the GDP that would be attained in a flexible-price allocation, ζmt is a monetary

policy shock, κπ and κy are parameters determining the policy rate response to inflation and the
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output gap, and κRi controls the degree of interest-rate smoothing. The flexible-price allocations

are obtained from equations (2.1) – (2.12) by setting the realized markup to zero (sit = 0) and

replacing Rt in (2.4) with the real interest rate.

It is worth pointing out that there are two different subjective expectation operators Eit and

E′
it in the above conditions. In the model, each time period t is divided into two stages. In

stage 1, inhabitants of each island receive an unbiased signal about that period’s TFP level and

form beliefs that firms and households on other islands receive a signal biased by the observed

confidence shock ξt. In stage 2, the true state of nature and the realized value of economic

activity are publicly revealed. ACD discuss two timing protocols for firms’ and households’

decisions: either supply is determined first with prices adjusting to meet demand, or demand is

determined first with supply adjusting to meet it. The model presented above is estimated under

the second assumption, as seen by the use of stage 1 expectations in the optimality conditions

for consumption and saving in equations (2.1), (2.2), and stage 2 expectations in equations (2.4),

(2.5), (2.13).

There are nine shocks in the model: a permanent (apt ) and a transitory (aτt ) TFP shock; a

permanent (ζIPt ) and a transitory (ζITt ) investment-specific shock; a news shock regarding future

productivity (ant ); a discount-rate shock (ζct ); a government-spending shock (ζgt ); a monetary

policy shock (ζmt ); and a confidence shock (ξt). The latter shock, observed in stage 1 of each

period, representing the perceived bias in other islands’ signals about that period’s TFP level.

The permanent TFP shock is given by

apt = apt−1 + ant−1 + εpt , (2.15)

and the permanent investment-specific shock follows a random walk

ζIPt = ζIPt−1 + εIPt , (2.16)

where εpt and εIPt are i.i.d. innovations. All remaining shocks are stationary AR(1) processes.

The model is estimated using quarterly U.S. data for six variables: GDP, consumption,

investment, hours worked, the inflation rate, and the federal funds rate. The sample period

is 1960:Q1 - 2007:Q4. The model parameters are estimated with Bayesian methods using the

frequency domain representation of the likelihood function. The estimated median of the posterior

distribution is reported in Table 7.

3 The Whittle likelihood

3.1 General case

Let {yt}Tt=1 denote a T -dimensional sample from a zero mean stationary Gaussian process

with autocovariance function Γ (τ ;θ) = cov (yt+τ ,yt). The log-likelihood function of YT =

9



(y′
1,y

′
2, . . . ,y

′
T )

′, up to an additive constant, is given by

ℓ(θ;YT ) = −1

2
log det(ΣT (θ))−

1

2
Y ′
TΣ

−1
T (θ)YT (3.1)

= −1

2
log det(ΣT (θ))−

1

2
tr
(
Σ̂TΣ

−1
T (θ)

)
(3.2)

where ΣT (θ) is a block Toeplitz matrix, with blocks given by Γ (τ ;θ) for τ ∈ {0, 1, 2, . . . , T − 1},
and Σ̂T = YTY

′
T is the sample version of ΣT (θ).

Evaluating ℓ(θ;YT ) requires computing the determinant and inverse of ΣT (θ), which can be

computationally prohibitive even for moderate sample sizes. To address this problem, Whittle

(1953) introduced a spectral approximation of ΣT (θ) as a computationally efficient method for

calculating the likelihood function of stationary Gaussian time series. The approximation exploits

the fact that block Toeplitz matrices can be approximated by block circulant matrices,7 whose

eigenvalue decomposition can be computed very efficiently using the discrete Fourier transform

(DFT). Specifically, it can be shown that for large T ,8

ΣT (θ) ≈ ΩT (θ) = F ∗
TST (θ)FT (3.3)

where ΩT is a symmetric block circulant matrix, FT is an orthonormal matrix of Fourier transform

coefficients, and F ∗
T is the conjugate transpose of FT . The matrix ST (θ) is block diagonal with

it’s i-th block {ST (θ)}ii = s(θ, ωi) given by the spectral density matrix of yt evaluated at the

i-th Fourier frequency,

s(θ, ωi) =
1

2π

∞∑
τ=−∞

Γ (τ ;θ) exp(−iωiτ), ωi =
2π(i− 1)

T
(3.4)

The sample version of s(θ, ω), called the periodogram of YT , is defined as

IT (ω) =
1

2π

T−1∑
τ=−(T−1)

Γ̂y(τ) exp(−iωτ) (3.5)

where Γ̂y(τ) =
∑T−τ

τ=1 yt+τy
′
t is the sample autocovariance of yt at lag τ and Γ̂y(−τ) = Γ̂y(τ)

′.

The periodogram can be efficiently calculated as

IT (ω) =
1

2πT
JT (ω)JT (ω)

∗ (3.6)

where JT (ω) =
∑T

t=1 yt exp(−iωt) is the DFT of YT . Indeed, pre-multiplication of YT by the

7A block circulant matrix A has the following form

A =


A0 A1 A2 · · · An−1

An−1 A0 A1 · · · An−2

...
...

...
...

A1 A2 A3 · · · A0

 ,
where the blocks have the same size. If A is symmetric, we have An−j = A′

j .
8See Gray (2006, Section 4.4) and the references therein.
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matrix F in (3.3) performs this transformation for ω ∈ {0, 2π/T, . . . , 2π(T − 1)/T}.
The Whittle log-likelihood is obtained by replacing ΣT (θ) in (3.1)-(3.2) with ΩT (θ), as

follows:9

ℓw(θ; IT ) = −1

2
log det(ST (θ))−

1

2
(FTYT )

∗S−1(θ)(FTYT ) (3.7)

= −1

2

T∑
j=1

{
log det(s(θ, ωj)) + JT (ωj)

∗s−1(θ, ωj)JT (ωj)
}

(3.8)

= −1

2

T∑
j=1

{
log det(s(θ, ωj)) + tr

(
IT (ωj)s

−1(θ, ωj)
)}

(3.9)

This can be recognized as the log-likelihood function of a sample of T independent but not

identically distributed ny−dimensional zero-mean complex Gaussian vectors, whose covariance

matrices are given by the spectral density of yt evaluated at the Fourier frequencies. Furthermore,

since IT (ωT−j) and s(θ, ωT−j) are complex conjugates of the spectral density and periodogram

evaluated at ωj , only half of the terms in equations (3.8)-(3.9) need to be evaluated.

The Whittle log-likelihood is considerably simpler to evaluate than the expression in equations

(3.1)-(3.2), as it avoids inverting potentially large covariance matrices and can leverage existing

fast DFT algorithms. However, it only approximates the exact Gaussian log-likelihood because

ΣT (θ) and ΩT (θ) differ in finite samples. Moreover, other computationally efficient methods,

such as the Kalman filter, can evaluate the exact likelihood for a large class of models without

inverting large matrices. Thus, the computational advantage of the Whittle log-likelihood is less

compelling now than when it was first proposed.10

Another appealing feature of the Whittle log-likelihood is its ability to facilitate estimation

using only a subset of frequencies. This may be desirable in cases when data contains noise

affecting only part of the periodogram, (e.g., the high frequencies) or when the theoretical model

is intended to match data only within a specific frequency range. This feature is particularly

relevant in macroeconomic research, where theoretical models often specifically target business

cycle movements and are known to be misspecified at lower and higher frequencies. Consequently,

one might prefer to fit the model to business cycle frequencies while ignoring those at the

spectrum’s lower and higher ends. In practice, this can be achieved by performing the summation

in (3.8)–(3.9) over the frequencies of interest,

ℓw(θ; I
ω̄
T ) = −1

2

∑
ω∈ω̄

log det(s(θ, ω)) + tr
(
IT (ω)s

−1(θ, ω)
)

(3.10)

where ω̄ denotes the set of included frequencies and is, in general, a set of disjoint intervals from

{0, 2π/T, . . . , 2π(T − 1)/T} such that if ω ∈ ω̄ then 2π − ω ∈ ω̄.

9Note that this is a discretized version of the log-likelihood using the Riemann sum as an approximation of an
integral in the original expression of Whittle (1953).

10There are, nevertheless, models for which the Whittle approximation remains the preferred approach for
computational efficiency reasons.

11



3.2 Linearized DSGE models

Evaluating the Whittle log-likelihood function requires only computing the model-implied spectral

density matrix of the observed variables at any frequency ω as a function of the model parameters

θ. In general, a linearized DSGE model can be expressed as a recursive equilibrium law of motion

through the following system of equations:

yt = C(θ)vt−1 +D(θ)ut (3.11)

vt = A(θ)vt−1 +B(θ)ut (3.12)

ut = G(θ)ut−1 + εt, εt ∼ N (0,Σε(θ)) (3.13)

where yt is a ny vector of observed variables, vt is a nv vector of endogenous state variables,

ut is a nu vector of exogenous state variables, and εt is a nu vector of exogenous shocks. The

matrices A, B, C, D, and G are functions of the structural parameters of the model, collected

in the nθ vector θ.

Then, the spectral density matrix of the observed variables yt is given by (see Uhlig (1999)):

syy(θ, ω) =
1

2π
W (ω,θ)Σε(θ)W (ω,θ)∗ (3.14)

where

W (ω,θ) =

[
C(θ)e−iω D(θ)

Inv Onv ,nu

][ (
Inv −A(θ)e−iω

)−1
B(θ)

(
Inu −G(θ)e−iω

)−1(
Inu −G(θ)e−iω

)−1

]

Using the above expression for syy(θ, ω) in (3.9) or (3.10) yields the full spectrum or band

spectral Whittle log-likelihood function of the set of observed variables y.

4 Simulation Study

In this section, I use Monte Carlo simulations to investigate the finite sample performance of three

estimators: (1) the time domain MLE using the exact likelihood, (2) the frequency domain MLE

using all frequencies, and (3) the frequency domain MLE using only business cycle frequencies.

The latter two estimators employ the Whittle approximation of the likelihood introduced in

Section 3. The time domain MLE uses the exact Gaussian likelihood function evaluated via the

Kalman filter. For brevity, I will refer to these estimators hereafter as TD, FD, and BC.

4.1 Setup

The Monte Carlo simulation proceeds as follows:

1. Solve the model from Section 2 using the ACD algorithm at the parameter values shown in

Table 7.

2. Using the Gaussian linear state space representation of the model solution, generate sample

trajectories of size T for the six observed variables: GDP (y), consumption (c), investment

(i), hours worked (h), the inflation rate (π), and the federal funds rate (r).

12



3. Estimate the 25 free model parameters with the three estimators by maximizing their

respective log-likelihood functions.

4. Repeat steps 2 and 3 N times.

The sample size is set to T = 192 observations, matching ACD’s sample size. The simulation

is initialized from the stationary distribution of the variables and the first 500 observations

are discarded to eliminate the dependence on initial conditions. The number of replications is

N = 1000. The numerical optimization in step (2) uses the true parameter values as a starting

point and combines global and local optimization algorithms. This optimization process is

identical for all three estimators.

4.2 Results: baseline parametrization

Table 1: Monte Carlo results

Mean Median IQR

parameter true TD FD BC TD FD BC TD FD BC

ν 0.28 0.28 0.33 0.42 0.28 0.33 0.40 [0.22, 0.33] [0.26, 0.40] [0.29, 0.52]
α 0.26 0.25 0.25 0.25 0.25 0.25 0.25 [0.25, 0.26] [0.24, 0.26] [0.24, 0.27]
ψ 0.50 0.51 0.45 0.43 0.50 0.44 0.38 [0.43, 0.58] [0.36, 0.53] [0.26, 0.54]
φ 3.31 3.25 2.31 2.50 3.17 2.09 2.11 [2.67, 3.71] [1.45, 2.95] [1.49, 3.09]
b 0.76 0.75 0.60 0.64 0.75 0.55 0.64 [0.73, 0.77] [0.51, 0.69] [0.55, 0.72]
χ 0.73 0.72 0.70 0.74 0.72 0.71 0.74 [0.71, 0.74] [0.68, 0.73] [0.70, 0.78]
κR 0.20 0.20 0.14 0.12 0.19 0.14 0.03 [0.14, 0.25] [0.08, 0.20] [0.00, 0.20]
κπ 2.27 2.23 2.02 2.18 2.18 1.95 1.94 [1.96, 2.46] [1.67, 2.33] [1.42, 2.58]
κy 0.12 0.16 0.24 0.16 0.14 0.20 0.13 [0.11, 0.18] [0.13, 0.31] [0.08, 0.20]
ρa 0.41 0.40 0.58 0.58 0.41 0.62 0.63 [0.24, 0.56] [0.38, 0.80] [0.23, 0.97]
ρn 0.22 0.22 0.39 0.18 0.20 0.33 0.03 [0.07, 0.32] [0.15, 0.60] [0.00, 0.32]
ρi 0.37 0.35 0.38 0.27 0.35 0.37 0.26 [0.30, 0.40] [0.31, 0.45] [0.04, 0.46]
ρc 0.89 0.88 0.94 0.93 0.88 0.95 0.95 [0.86, 0.90] [0.90, 0.99] [0.90, 0.98]
ρg 0.79 0.76 0.76 0.73 0.77 0.77 0.74 [0.72, 0.80] [0.71, 0.81] [0.63, 0.86]
ρm 0.65 0.63 0.64 0.62 0.63 0.64 0.64 [0.59, 0.66] [0.59, 0.68] [0.55, 0.72]
ρξ 0.83 0.81 0.77 0.85 0.82 0.79 0.88 [0.79, 0.84] [0.72, 0.84] [0.79, 0.93]
σaP 0.41 0.38 0.82 0.51 0.39 0.70 0.49 [0.33, 0.45] [0.49, 1.08] [0.20, 0.71]
σaT 0.35 0.34 0.36 0.41 0.34 0.34 0.40 [0.30, 0.39] [0.27, 0.43] [0.27, 0.55]
σn 0.38 0.38 0.26 0.60 0.38 0.29 0.56 [0.32, 0.44] [0.14, 0.38] [0.33, 0.83]
σiP 0.61 0.55 0.66 0.60 0.57 0.70 0.17 [0.31, 0.78] [0.27, 1.00] [0.03, 1.13]
σiT 5.80 5.77 4.20 5.57 5.56 3.79 4.54 [4.73, 6.63] [2.57, 5.38] [2.71, 7.04]
σc 0.36 0.36 1.03 0.60 0.35 0.53 0.48 [0.25, 0.46] [0.35, 1.16] [0.26, 0.77]
σg 1.71 1.68 1.69 1.71 1.69 1.70 1.69 [1.63, 1.74] [1.62, 1.77] [1.56, 1.85]
σm 0.31 0.30 0.32 0.33 0.30 0.31 0.31 [0.28, 0.32] [0.28, 0.34] [0.27, 0.37]
σξ 0.61 0.66 0.45 0.36 0.60 0.41 0.17 [0.44, 0.81] [0.26, 0.58] [0.03, 0.48]

Note: Monte Carlo performance of the TD, FD, and BC estimators at the baseline parametrization of
the ACD model. The estimates of the mean, median and interquartile range (IQR) are based on 1000
MC replications with a sample size of T = 192.

Table 1 presents the first set of results, reporting the mean, median, and interquartile range

(IQR) for each estimated parameter. Comparing these statistics with the true parameter values

(first column) reveals the relative performance of the three estimators. As expected, the TD

estimator performs best in both point estimate accuracy and variability around true values. The

two Whittle likelihood-based estimators perform significantly worse for most parameters, with

the BC estimator generally showing lower accuracy and higher volatility. For instance, with
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few exceptions, the BC estimator’s IQR is the widest, while the TD estimator’s is consistently

the narrowest, often by a substantial margin. Despite their width, the FD and BC estimators’

IQRs sometimes exclude the true parameter values. Specifically, both estimators’ 25th percentile

exceeds the true value of ρc, while their 75th percentile falls below the true values of σξ, φ, and

b. The FD estimator shows additional misalignments: its IQR lies above the true values of κy

and σaP , and below those of κR and σiT .
11 In contrast, the TD estimates’ IQR consistently

includes true parameter values. Figure 1 illustrates these findings using boxplots that display,

for each parameter, the distribution of estimates expressed as percentage deviations from their

true values.

ν α ψ ϕ b χ κR κπ κy ρa ρn ρi ρc ρg ρm ρξ σaP σaT σn σiP σiT σc σg σm σξ

parameter

−100

0

100

200

p
er

ce
nt

TD

FD

BC

Figure 1: Boxplots of parameter estimate deviations (as percentages of the true values). Each box
represents the interquartile range of the estimates obtained using the respective estimator. The vertical
bars within each box indicate the median estimate. The results are based on 1000 MC replications with a
sample size of T = 192.

These observations suggest that the Whittle likelihood-based estimators may exhibit a

significant estimation bias. This is further corroborated by Table 2, which reports the bias,

standard deviation (SD) and root mean squared error (RMSE) for each parameter across the 1000

replications. To enable comparisons across parameters, all statistics are expressed as percentages

of their true values. On average, the bias of the TD estimates is about 4% in absolute value,

compared to 30% and 21% for FD and BC, respectively. The TD estimator’s largest bias is

approximately 28% for κy. In contrast, FD shows the highest bias of about 187% for σc, with

two other parameters (σap and κy) approaching 100% bias. The BC estimator’s largest bias

is also for σc, at slightly below 100%. The two Whittle likelihood-based estimators exhibit

moderate agreement in identifying relatively more or less biased parameters, with a Spearman

rank correlation of .47. In contrast, TD and FD show a negative correlation (−.3), while TD

and BC exhibit a very weak positive correlation (.1). The SDs reported in the middle panel

measures the variability of the estimates. On average, the TD estimates show roughly half the

variability of the FD estimates and one-third that of the BC estimates. For individual parameters,

the FD estimates are generally less variable than the BC estimates, while the TD estimates

consistently exhibit the lowest standard deviation. Certain common patterns emerge across

11Note that the figures in the table are rounded to the second digit. The true value of κR is 0.198 while the
75th percentile of FD is 0.197689.

14



Table 2: Monte Carlo results (cont.)

Bias (%) SD (%) RMSE (%)

parameter TD FD BC TD FD BC TD FD BC

ν -2.3 17.9 50.4 26.4 36.0 81.3 26.5 40.2 95.7
α -0.3 -1.8 -0.4 4.2 5.9 7.0 4.2 6.2 7.1
ψ 2.5 -10.7 -13.7 25.1 27.5 49.4 25.2 29.5 51.3
φ -2.0 -30.4 -24.6 24.4 33.2 44.4 24.5 45.0 50.8
b -0.8 -21.0 -15.0 4.1 13.1 13.1 4.2 24.8 19.9
χ -1.2 -3.8 1.0 2.9 5.4 8.4 3.1 6.6 8.5
κR -0.4 -29.8 -41.7 37.5 42.7 80.7 37.5 52.1 90.8
κπ -1.9 -11.2 -3.8 16.8 21.8 46.3 16.9 24.5 46.5
κy 28.3 96.0 34.3 57.5 122.2 102.6 64.1 155.4 108.2
ρa -2.5 41.7 40.1 55.3 70.3 91.2 55.4 81.7 99.7
ρn -3.5 72.8 -20.1 77.4 128.0 112.7 77.5 147.3 114.4
ρi -6.0 2.0 -26.5 20.5 28.1 62.0 21.3 28.2 67.4
ρc -1.3 6.0 4.9 3.7 5.7 6.9 3.9 8.2 8.4
ρg -3.4 -3.6 -6.5 7.5 11.1 23.8 8.2 11.7 24.6
ρm -3.1 -1.7 -3.4 9.0 10.2 23.0 9.6 10.4 23.3
ρξ -2.4 -7.9 1.7 5.1 11.8 12.9 5.6 14.2 13.1
σaP -5.8 101.4 25.1 23.2 105.3 95.2 23.9 146.2 98.5
σaT -1.2 2.9 17.9 19.5 52.1 66.5 19.6 52.2 68.8
σn -0.6 -29.9 58.8 24.2 37.8 96.7 24.2 48.2 113.2
σiP -10.0 7.5 -2.2 55.2 73.1 115.8 56.1 73.5 115.8
σiT -0.7 -27.6 -4.1 26.5 36.7 70.0 26.5 45.9 70.1
σc 1.3 189.7 67.0 42.4 304.7 134.0 42.4 358.9 149.8
σg -1.2 -0.8 0.4 5.3 7.4 14.4 5.4 7.4 14.4
σm -2.9 1.0 6.3 11.5 15.8 32.9 11.9 15.9 33.5
σξ 7.8 -27.4 -41.8 49.9 42.7 77.3 50.5 50.7 87.9

Note: Average percentage bias, standard deviation and root mean square error relative to the
modulus of the true parameter value. The results are based on 1000 MC replications with a
sample size of T = 192.

estimators regarding the relative variability of the parameters: the estimates of α, χ, ρc, and

σg show the least variation across all estimators, while the estimates of κy, ρn, σc, and σiP are

among the most variable. The rank correlation between SDs of the TD and either one of the

Whittle likelihood-based estimators is approximately .9, while that between the FD and the BC

reaches .93. The last three columns of Table 2 show the normalized RMSE, which measures

overall estimation accuracy by accounting for both bias and variability. The RMSE patterns

largely mirror those of the standard deviations, but the TD estimator’s superiority over the

Whittle likelihood-based estimators is even more pronounced, reflecting the larger biases affecting

the latter. Rank correlations across estimator pairs remain close to .9, slightly weaker than those

for SDs. The parameters χ, ρξ, σg, α, and ρc have the lowest RMSE across all estimators, while

κy, ρn, σc, and σiP have the highest. Notably, even TD’s least accurately estimated parameters

achieve lower RMSE than many FD or BC estimates. For instance, 10 of BC’s 25 parameter

estimates exceed TD’s highest RMSE value, observed for ρn. Figure 2 displays histograms of

the sampling distributions of the TD, FD, and BC estimates, further demonstrating the TD

estimator’s superiority over the Whittle likelihood-based estimators. The distributions of the

TD estimates (panel (a)) are generally unimodal, approximately symmetric, and reasonably

well centered at the true parameter values, with three exceptions: ρa, ρn, and σiP . For these

parameters, large concentrations of estimates occur at the lower boundary of the parameter

space, resulting in negative mean and median biases (see Tables 1 and 2), with σiP being the
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(a) Time domain MLE.
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(b) Frequency domain MLE using all frequencies.
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(c) Frequency domain MLE using only business cycle frequencies.

Figure 2: Sampling distributions of the estimated parameters. The ▲ symbol shows the estimate of the
mean and the black vertical line indicates the true value. The results are based on 1000 MC replications
with a sample size of T = 192.

16



most severely affected. The FD (panel (b)) and BC (panel (c)) estimators perform notably worse,

with many parameters showing multimodality, skewness, and concentration of estimates at the

boundaries, far from the true values. These departures from normality are more clearly seen

in the Q-Q plots in Figure 1 of the online Appendix. While exact normality is not expected

with 192 observations, the TD estimates generally align better with the 45-degree line and the

theoretical normal quantiles compared to the frequency domain estimators.

Discussion

The Monte Carlo results strongly favor the time domain estimator over both frequency domain

estimators. The superiority of the exact likelihood-based estimator is not surprising, given the

assumption of correct model specification. However, the notably poor performance of the Whittle

likelihood-based estimators warrants further investigation, which is the focus of this section.

The discussion in Section 3 (see equations 3.3 – 3.9) outlines two equivalent interpretations

of the Whittle likelihood approximation. First, it approximates the likelihood function of the

time-domain data vector YT by replacing its covariance matrix ΣT (θ) with a block-circulant

matrix ΩT (θ). Alternatively, it approximates the likelihood function of the Fourier-transformed

data vector FTYT , replacing its covariance matrix FTΣT (θ)F
∗
T with a block diagonal matrix

ST (θ). The vector Y (ω) = FTYT , whose i-th block element is

y(ωi) = [y(ωi), c(ωi), i(ωi), h(ωi), π(ωi), r(ωi)]
′, (4.1)

is the frequency domain representation of the observed data, organized by frequency ω ∈
{0, 2π/T, . . . , 2π(T − 1)/T}, rather than time t ∈ {1, 2, . . . , T}. To obtain the band spectral

likelihood function, one selects the frequencies of interest, i.e. the business cycle frequencies. This

amounts to replacing the full sample Fourier matrix FT with a Fourier matrix Fbc that extracts

these frequencies from the original data vector. The exact band spectral likelihood function’s

covariance matrix is then FbcΣT (θ)F
∗
bc, while its Whittle approximation uses the corresponding

submatrix of ST (θ).
12

A block diagonal covariance matrix implies that observations at different frequencies are

uncorrelated. For example, any two frequency components of output, y(ωj) and y(ωk), should

be uncorrelated for all ωj ̸= ωk, and this holds for both autocorrelations of individual variables

and cross-correlations among them. A simple way to assess the appropriateness of the Whittle

approximation is to check whether this is true for the correlation matrix in the exact frequency

domain likelihood function. Figure 3 compares the respective correlation matrices of the full

spectrum and band spectral likelihood functions. It is clear that the off-diagonal blocks are

not all zero. The largest cross-frequency correlations (in absolute value) are observed between

the frequency components of y, c, and, to a lesser extent, i. This is easier to see in panel (d)

of the figure, which shows a large number of nonzero off-diagonal 3× 3 blocks, corresponding

to the correlation matrices of these variables at different frequencies from the BC part of the

spectrum. Note that all correlations smaller than .1 in absolute value have been zeroed-out for

12Let K be a selection matrix of zeros and ones such that KST (θ)K
′ selects the BC frequency submatrix of

ST (θ). Then Fbc = KFT .
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clarity. The strongest correlations are between different frequency components of c (up to .93),

between c and y (up to .8), and between components of y (up to .73). The autocorrelations and

cross-correlations involving i are weaker, around 0.4, while the variables h, π, and r exhibit no

pairwise correlations exceeding 0.1. As explained in Section 3, the Whittle likelihood is valid as
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Figure 3: Correlation matrices in the Whittle approximation and the exact frequency domain likelihood
function. Because of symmetry, only the lower triangles of the matrices and frequencies from the [0, π]
part of the spectrum are displayed. Frequencies between π/16 and π/3 are business cycle frequencies.
Correlation coefficients smaller than .1 in absolute value have been zeroed out.

an asymptotic approximation of the true Gaussian likelihood function only when the process is

stationary. For non-stationary processes, different frequency components of the periodogram

lose their asymptotic independence. The strong correlation patterns observed in Figure 3 may

therefore stem from the high persistence of the variables in the model. Indeed, while all eigenvalues

of matrix G in (3.13) lie inside the unit circle – ensuring the stationarity of yt – two of them

equal 0.999999. This near-unit root characteristic arises from how the model in Section 2 is

implemented in the code. While apt and ζIPt are modeled as permanent, they are represented

in the code as AR(1) processes with autoregressive coefficients of 0.999999. As a result, these

shocks are technically stationary but exhibit extreme persistence. Given the crucial role of apt in

driving the dynamics of yt, ct, and it,
13 these variables inherit its persistence. For example, their

autocorrelations remain near .999 even at lag 1000, whereas the other observed variables – ht, πt,

13For instance, in the variance decompositions apt contributes most of the volatility of these variables.
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and rt – show autocorrelations below .5 by the 10th lag.

These findings suggest an explanation for the poor performance of Whittle likelihood-based

estimators: the underlying data generating process prevents accurate approximation by the

Whittle likelihood, resulting in larger bias and RMSE compared to estimators using the true

likelihood function. It remains unclear why some parameters are more affected by misspecification

than others. This is likely tied to the distribution of parameter-specific information across

different regions of the likelihood function and the extent to which those regions are influenced by

misspecification. This is an interesting question that will be explored in future research. Another

interesting question left for future work is whether the exact band spectral likelihood, alluded

to above, can be a viable alternative to the Whittle likelihood approximation. Since the band

spectral case is simply a linear transformation of the full information time domain Gaussian

density, the exact band spectral likelihood function is, in principle, straightforward to compute.

However, in practice, it is computationally very expensive, both in terms of time and memory

consumption. This makes it impracticable for most cases of interest. It remains to be determined

whether a more efficient implementation can be found.

The question I will focus on here is how the quality of the Whittle approximation is affected by

less persistent processes for apt and ζIPt . To investigate this, I set their autoregressive coefficients

to 0.9, matching the persistence of the next most persistent shock in the model – the a discount-

rate/preference shock ζct (see Table 7). Under this parameterization, the persistence of yt, ct, and

it is similar to, though slightly higher than, that of ht, πt, and rt. Figure 4 shows the correlation

matrices of the frequency domain likelihoods for this case. As before, the off-diagonal blocks

are non-zero, but the correlations are noticeably weaker, with a maximum value of 0.48. The

strongest correlations are again between different frequency components of c, followed by those

of y and i. This reduced deviation from a block-diagonal correlation matrix suggests that the

Whittle approximation may be more appropriate for the data generating process under this

alternative parameterization. In the next section, I evaluate how this change affects the relative

performance of the Whittle likelihood-based estimators.

4.3 Results: alternative parametrization

The results for the second set of simulations are organized similarly to the previous section.

Table 3 reports the mean, median, and IQR for all parameters. While the TD estimator remains

the most accurate and least volatile, the Whittle likelihood-based estimators show notable

improvement along these dimensions. Notably, their IQRs now include the true values for all

parameters. The TD estimator consistently produces the shortest IQRs, while the BC estimator

yields the longest. However, the average difference between the TD and FD estimators’ IQRs is

only about 22%, in line with theory, given their asymptotic equivalence. In contrast, the BC

estimator’s IQRs are on average about 80% wider than those of FD and 130% wider than those

of TD. Figure 5 provides a visual representation, displaying boxplots of the percent deviations

of parameter estimates from their true values. A key observation is that all bars now cross the

horizontal line at 0, and the TD and FD bars are much more comparable in length, in contrast to

Figure 1. Table 4 reports the bias, SD, and RMSE for all parameters, expressed as percentages
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Figure 4: Correlation matrices in the Whittle approximation and the exact frequency domain likelihood
function under the alternative parametrization for the apt and ζIPt processes.
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Figure 5: Alternative parametrization of the ACD model. See the Notes to Figure 1.

relative to their true values. The average absolute bias is approximately 4%, 7%, and 13%

for the TD, FD, and BC estimates, respectively. While the TD estimator maintains the same

average bias as in the baseline parameterization, the Whittle likelihood-based estimators show

substantially reduced bias compared to their previous performance. Furthermore, there is now

stronger agreement among the three estimators regarding which parameters exhibit relatively

higher or lower bias, as evidenced by the rank correlation coefficients: 0.56 between TD and FD
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Table 3: Monte Carlo results

Mean Median IQR

parameter true TD FD BC TD FD BC TD FD BC

ν 0.28 0.28 0.31 0.32 0.28 0.30 0.32 [0.24, 0.33] [0.25, 0.36] [0.22, 0.41]
α 0.26 0.25 0.25 0.25 0.25 0.25 0.25 [0.25, 0.26] [0.25, 0.26] [0.24, 0.26]
ψ 0.50 0.52 0.52 0.54 0.51 0.51 0.49 [0.44, 0.58] [0.42, 0.60] [0.35, 0.66]
φ 3.31 3.50 2.98 3.36 3.39 2.86 2.99 [2.90, 4.00] [2.20, 3.61] [2.29, 4.06]
b 0.76 0.76 0.73 0.74 0.76 0.74 0.74 [0.74, 0.78] [0.69, 0.77] [0.70, 0.79]
χ 0.73 0.73 0.73 0.73 0.73 0.73 0.73 [0.72, 0.74] [0.72, 0.74] [0.70, 0.76]
κR 0.20 0.20 0.18 0.16 0.20 0.18 0.14 [0.16, 0.24] [0.14, 0.23] [0.02, 0.26]
κπ 2.27 2.27 2.25 2.35 2.26 2.21 2.22 [2.07, 2.46] [1.99, 2.49] [1.89, 2.64]
κy 0.12 0.16 0.19 0.17 0.15 0.16 0.13 [0.11, 0.19] [0.11, 0.24] [0.07, 0.23]
ρa 0.41 0.43 0.46 0.46 0.45 0.46 0.48 [0.23, 0.62] [0.21, 0.71] [0.03, 0.79]
ρn 0.22 0.23 0.26 0.32 0.21 0.22 0.26 [0.09, 0.34] [0.07, 0.38] [0.01, 0.55]
ρi 0.37 0.35 0.31 0.26 0.35 0.32 0.25 [0.29, 0.41] [0.25, 0.39] [0.01, 0.44]
ρc 0.89 0.88 0.90 0.90 0.88 0.90 0.90 [0.86, 0.90] [0.87, 0.92] [0.85, 0.96]
ρg 0.79 0.76 0.77 0.74 0.76 0.77 0.76 [0.73, 0.80] [0.73, 0.81] [0.65, 0.87]
ρm 0.65 0.64 0.65 0.62 0.64 0.65 0.64 [0.60, 0.68] [0.62, 0.69] [0.56, 0.71]
ρξ 0.83 0.82 0.81 0.81 0.82 0.82 0.83 [0.79, 0.84] [0.78, 0.85] [0.75, 0.89]
σaP 0.41 0.35 0.41 0.27 0.37 0.42 0.25 [0.29, 0.44] [0.33, 0.51] [0.02, 0.49]
σaT 0.35 0.35 0.36 0.38 0.36 0.36 0.40 [0.30, 0.41] [0.29, 0.43] [0.27, 0.52]
σn 0.38 0.38 0.36 0.37 0.38 0.37 0.39 [0.32, 0.44] [0.30, 0.44] [0.21, 0.52]
σiP 0.61 0.61 0.65 0.48 0.64 0.68 0.30 [0.44, 0.85] [0.43, 0.90] [0.03, 0.84]
σiT 5.80 6.16 5.86 7.41 6.00 5.57 6.42 [5.09, 6.99] [4.28, 6.97] [4.35, 9.49]
σc 0.36 0.36 0.37 0.47 0.35 0.34 0.41 [0.25, 0.47] [0.21, 0.48] [0.22, 0.65]
σg 1.71 1.68 1.70 1.75 1.68 1.70 1.72 [1.62, 1.74] [1.63, 1.76] [1.59, 1.88]
σm 0.31 0.31 0.32 0.33 0.31 0.32 0.32 [0.29, 0.33] [0.29, 0.34] [0.28, 0.37]
σξ 0.61 0.70 0.69 0.80 0.65 0.59 0.55 [0.49, 0.85] [0.41, 0.87] [0.26, 1.09]

Note: Alternative parametrization of the ACD model. See the Notes to Table 1.

estimators, and 0.89 between TD and BC estimators. The estimates of α and χ consistently

show low bias across all estimators, while κy, ρi, ρn, and σξ are consistently among the most

biased parameters. With the substantially reduced biases, the SD and RMSE results now align

more closely. The TD estimator’s average RMSE is approximately 80% of the FD estimator’s

and 45% of the BC estimator’s. The rank correlations between RMSEs are high: 0.98 between

TD and FD estimators, and 0.95 between either of these and the BC estimator. The pattern of

parameters with the lowest and highest RMSEs remains consistent with the previous findings

(see Table 2). Specifically, χ, ρξ, σg, α, ρc, and ρg exhibit the lowest RMSEs, while κy, ρa, ρn,

σc, and σiP , and σξ show the highest RMSE across all estimators.

Figure 6 displays histograms of the sampling distributions of the TD, FD, and BC estimates.

As noted earlier, the relatively short sample means that we should not expect high accuracy

in the normal approximation (see the Q-Q plots in Figure 2 of the online Appendix). The

differences between the sampling distributions of the time and frequency domain estimators

reflect distortions caused by the Whittle approximation of the exact likelihood function. In

this second parameterization, the improved quality of the Whittle approximation is evident in

the substantially better sampling distributions for the FD and BC estimators across several

parameters. The most striking improvements are seen for b (both the FD and BC estimators),

and for κR, ρc and σc (FD estimator only). Less pronounced but still notable improvements

appear in the sampling distributions of κπ and ρξ (both FD and BC estimators), as well as σaP ,

σaT and σn (FD estimator only).
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Table 4: Monte Carlo results (cont.)

Bias (%) SD (%) RMSE (%)

parameter TD FD BC TD FD BC TD FD BC

ν 0.2 8.3 14.1 25.8 31.1 53.8 25.8 32.1 55.6
α -0.3 -0.2 -0.3 3.5 4.0 6.0 3.6 4.0 6.0
ψ 3.7 4.7 7.5 22.0 26.7 52.5 22.3 27.1 53.0
φ 5.6 -10.1 1.3 25.7 33.0 47.5 26.3 34.5 47.6
b 0.1 -4.3 -2.4 4.7 8.6 9.4 4.7 9.6 9.7
χ -0.4 -0.3 -0.1 2.5 3.1 5.8 2.5 3.1 5.8
κR 0.7 -7.2 -19.9 32.4 36.2 72.5 32.4 36.9 75.2
κπ 0.0 -0.7 3.5 14.0 17.9 31.2 14.0 17.9 31.4
κy 29.7 53.0 37.9 58.6 85.5 115.3 65.6 100.6 121.3
ρa 4.7 11.1 10.7 63.5 74.2 88.5 63.6 75.1 89.2
ρn 4.2 15.4 44.0 85.3 103.7 139.9 85.4 104.9 146.7
ρi -7.5 -17.0 -29.6 23.3 29.2 61.2 24.5 33.8 67.9
ρc -0.8 0.9 1.1 3.8 4.5 7.8 3.9 4.5 7.9
ρg -3.5 -2.6 -5.3 7.2 7.6 22.2 8.0 8.1 22.8
ρm -1.2 1.1 -3.9 8.5 9.3 22.3 8.6 9.3 22.6
ρξ -2.0 -3.2 -2.4 4.9 7.6 12.5 5.3 8.2 12.8
σaP -13.0 0.2 -32.8 32.6 36.8 59.0 35.1 36.8 67.4
σaT 2.2 4.1 9.7 24.1 29.1 58.7 24.2 29.4 59.5
σn -0.6 -5.9 -3.3 25.4 31.0 54.5 25.4 31.5 54.6
σiP 0.7 7.3 -20.8 52.9 60.2 85.7 52.9 60.7 88.2
σiT 6.2 0.9 27.6 27.0 38.0 77.4 27.7 38.0 82.1
σc 2.0 3.4 31.1 46.1 59.1 92.6 46.2 59.2 97.6
σg -1.4 -0.4 2.4 5.6 5.9 13.9 5.8 6.0 14.1
σm -1.1 2.6 6.8 10.5 13.2 26.6 10.5 13.5 27.5
σξ 13.9 12.5 30.4 49.6 66.4 126.5 51.5 67.6 130.1

Note: Alternative parametrization of the ACD model. See the Notes to Table 2

The fact that, for the same set of parameters, the performance of the FD estimator improves

notably while the BC estimator does not, underscores that Whittle likelihood-based band spectral

estimators are susceptible to two distinct sources of distortion. The first, as discussed earlier,

stems from the significant correlations among different frequency components of the observed

variables. This distortion also affects the FD estimator, whose performance would otherwise

align with that of the TD estimator. Therefore, comparing the sampling distributions of these

two estimators reveals the extent to which different parameters are influenced by distortions

from the Whittle approximation. A visual comparison of plots (a) and (b) in Figure 6 highlights

substantial variation in this effect across parameters. For instance, the TD and FD estimates

exhibit very similar sampling distributions for σg, ρn, and α, but noticeably different distributions

for φ and b.

The second type of distortion arises from the reduced information content in the band spectral

version of the likelihood, where ω̄ in (3.10) represents only a subset of all frequencies. The

BC estimator, in particular, suffers from this limitation, using less than 30% of all frequency

domain observations – just 58 observations when T = 192. Absent such information loss, the

BC estimator would deliver the same results as the FD estimator. This, of course, is only a

theoretical possibility – in reality, all frequencies contain some information, and removing any of

them would result in loss of information. Visual inspection of Figures 5 – 6 along with the

22



0.2 0.4
0

5
de

ns
it

y ν

0.225 0.250 0.275
0

25
α

0.5 1.0
0

2
ψ

2 4 6
0.0

0.5 ϕ

0.7 0.8
0

10 b

0.70 0.75
0

20

de
ns

it
y χ

0.0 0.2 0.4
0

5 κR

2 3
0

1 κπ

0.2 0.4
0

5 κy

0.0 0.5 1.0
0

1
ρa

0.0 0.5 1.0
0

2

de
ns

it
y ρn

0.00 0.25 0.50
0

5
ρi

0.8 0.9
0

10 ρc

0.6 0.8
0

5 ρg

0.4 0.6
0

5 ρm

0.7 0.8 0.9
0

10

de
ns

it
y ρξ

0.00 0.25 0.50
0

2
σaP

0.00 0.25 0.50
0.0

2.5
σaT

0.00 0.25 0.50
0.0

2.5
σn

0 1
0

1 σiP

5 10
0.0

0.2

de
ns

it
y σiT

0.0 0.5
0

2 σc

1.50 1.75 2.00
0.0

2.5
σg

0.3 0.4
0

10 σm

1 2
0

1 σξ

(a) Time domain MLE.
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(b) Frequency domain MLE using all frequencies.
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Figure 6: Sampling distributions of the estimated parameters in the alternative parametrization of the
ACD model. See the Notes to Figure 2.
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uncertainty statistics in Tables 3 and 4, reveals that the impact of this information loss varies

across parameters. For example, for φ, b, and κπ, the FD and BC estimators show relatively similar

performance, suggesting minimal information loss from excluding low and high frequencies. In

contrast, for parameters like ρg ρm, and ρi, the BC estimator shows considerably larger sampling

uncertainty compared to the FD estimator, indicating greater information loss. Interestingly,

some parameters exhibit markedly different sampling distributions between the FD and BC

estimators despite having similar uncertainty statistics. This is evident in the distributions

of ρi, ρn, κR, σ
P
a , and σn in (b) and (c) of Figure 6. Given that the TD and FD sampling

distributions are fairly similar for these parameters, the observed differences between the FD

and BC estimators are likely driven by significant information loss in the BC estimator, rather

than distortions from the Whittle likelihood approximation.

The last observation notwithstanding, finite sample approximation errors inevitably affect the

performance of Whittle likelihood-based estimators. In particular, MC estimates of uncertainty,

such as those presented earlier in this section, may be unreliable and misleading. This complicates

our ability to assess the true information loss from excluding certain frequencies – a crucial

consideration when using band spectral estimation methods. The next section presents an

alternative approach to quantifying information content and loss that is robust to distortions

from Whittle likelihood approximations.

5 Can the loss of information be predicted?

This section considers an alternative method for assessing the information loss associated with

band spectral estimation. The motivation for exploring an alternative to the Monte Carlo

simulation-based approach is twofold. First, as discussed at the end of the previous section,

the finite-sample Whittle likelihood’s approximate nature can distort assessments of the true

information loss in band spectral estimation. Second, the Monte Carlo method is computationally

intensive, making it challenging – and potentially impractical – to conduct comparative analyses

across different scenarios, such as varying parameterizations, sets of observed variables, frequency

bands, or sample sizes, etc.

As noted earlier, band spectral estimators rely on a subset of the frequency domain obser-

vations. It is important to emphasize that this is not equivalent to having fewer observations

in the time domain. Specifically, excluding some low and high frequency observations is not

equivalent to trimming observations from the beginning and end of the time domain sample.

This distinction arises because the information content of different frequencies is not uniform

across parameters. For instance, omitting a small number of low frequencies might result in a

disproportionately large loss of information for some parameters while having only a negligible

impact on others. The extent of information loss depends on how parameter-specific information

is distributed across the spectrum. This, in turn, is determined by the role each parameter plays

in the theoretical model and its influence on the distribution of the observed variables. In this

sense, the selection of frequency bands is akin to the choice of observed variables in estimation:

both choices affect parameters differentially, as neither frequencies nor variables provide the same

level of information about all model parameters.
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Similarly to the effect of excluding observable variables, the information analysis in band

spectral estimation can be framed as a missing data problem (see, e.g., Dempster et al. (1977),

Palm and Nijman (1984), and Iskrev (2019)). In this framework, the loss of information is

quantified by comparing the expected information content of complete and incomplete samples.

In the current context, a complete sample refers to observing all frequencies, while an incomplete

sample is the one restricted to a specific frequency band. The expected amount of information

about the model parameters contained in a sample’s distribution can be measures using the

Fisher information matrix, which is discussed next.

5.1 Fisher information matrix and Cramér-Rao lower bounds

The Fisher information matrix (FIM) is defined as

IT (θ) = E
[

∂
∂θ ℓ(θ;YT )

∂
∂θ′ ℓ(θ;YT )

]
(5.1)

where the expectation is with respect to the distribution of YT given the value of θ. The partial

derivative of the log-likelihood function with respect to θ, called the score function, has an

expected value of zero and therefore IT (θ) is the covariance matrix of the score at θ. When the

log-likelihood is twice continuously differentiable equation (5.1) can be rewritten as14

IT (θ) = −E

[
∂2

∂θ∂θ′ ℓ(θ;YT )

]
(5.2)

Thus, the FIM characterizes the expected curvature of the log-likelihood function, showing how

quickly it declines around its peak value for each parameter. Intuitively, this indicates how

informative a sample YT is expected to be about any given parameter θi from θ. A sharply

peaked log-likelihood with respect to θi implies that the set of plausible values for the parameter

is narrow, allowing for precise estimation. Conversely a flatter log-likelihood suggests that many

values of θi are nearly equally plausible, making precise estimation more challenging.

More formally, the use of FIM as a measure of the quantity of information about θ is based

on the fact that it sets a limit for the maximum attainable precision of unbiased estimators of θ.

By the information inequality (Rao (1945), Cramér (1946)), the inverse of the FIM provides a

lower bound – the Cramér-Rao lower bound (CRLB) – on the variance of any unbiased estimator

of θ. Therefore, if θ̂ is an unbiased estimator with covariance matrix cov (θ̂), then

cov (θ̂)− I−1
T (θ) ⪰ 0 (5.3)

where ⪰ 0 means that the quantity is a positive semidefinite matrix. This implies that the square

roots of the diagonal elements of the inverse FIM are CRLBs for the standard deviations of the

elements of θ̂, i.e.

std (θ̂i) ≥ crlb(θi) =
√{

I−1
T (θ)

}
ii

(5.4)

14See Hansen (2022, Ch10.)
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By comparing the CRLBs for complete and incomplete samples, we can quantify the information

loss associated with the latter. This approach is particularly appealing for Gaussian models,

where the required FIMs are straightforward to evaluate. Specifically, for a vector Y distributed

as a (complex) Gaussian with mean zero and a covariance matrix Σ(θ), the (k, l)-th element of

the FIM is given by15

{I(θ)}k,l ∝ trace

(
Σ−1(θ)

∂

∂θk
Σ(θ)Σ−1(θ)

∂

∂θl
Σ(θ)

)
(5.5)

From this expression, it is clear that I(θ) does not depend on a particular sample but rather on

the general properties of Y – the set of observed variables and either the number of observations

or the included frequency band, all encoded in the covariance matrix Σ. In the full information

time domain case, Y and Σ(θ) correspond to YT and ΣT (θ), as described in Section 3.1. In

the full information frequency domain case, Y is Y (ω) = FTYT and Σ(θ) is FTΣT (θ)F
∗
T (see

Section 4.2). Because the Fourier transform matrix FT is orthonormal, the expression in (5.5) is

identical for both domains. This is unsurprising given that the two representations are equivalent

and no information is lost or gained when transforming from one domain to the other.

Information loss generally does occur when using only a subset of frequencies, which corre-

sponds to deleting rows of the FT matrix. For instance, using only the BC frequencies modifies

Y in (5.5) to Y (ωbc) = FbcYT and Σ(θ) to FbcΣT (θ)F
∗
bc (see Section 4.2). This yields the FIM

corresponding to the exact band spectral likelihood function. For the FIM associated with the

Whittle approximation, the block diagonal matrix ST (θ) from Section 3.1 is used in place of

Σ(θ). This provides an asymptotic approximation of the exact FIM and offers a convenient way

to compute the asymptotic covariance matrix of the MLE through its inverse. This relationship

holds due to the asymptotic efficiency of the MLE, where (5.4) holds with equality as T → ∞.

The full information and band spectral FIMs, along with their respective CRLBs, enable

predictions along two dimensions: (1) the estimation uncertainty associated with each approach,

and (2) the relative loss of information in the band spectral case. The next section presents these

predictions for the ACD model parameters and compares them with the MC simulations results.

5.2 Monte Carlo results vs CRLB predictions

This section evaluates the accuracy of the CRLB as a predictor of estimation uncertainty. This

evaluation is both necessary and important because, as its name suggests, the CRLB represents

only a theoretical bound on uncertainty, leaving open the question of how closely it aligns with

actual estimation uncertainty, particularly for relatively small sample sizes. Furthermore, the

theoretical result applies only to unbiased estimators; however, as observed in the previous

section, some parameter estimates exhibit non-negligible biases. I use the MC estimates of the

sampling standard deviations of the exact and Whittle MLEs as proxies for true estimation

uncertainty. Due to the issues with Whittle likelihood-based estimators discussed in Section 4.2,

this section presents results only for the alternative parametrization described in Section 4.3.

Results for the baseline parametrization are provided in Appendix B.

15See Kay (1993, Chapters 3, 15). The constant of proportionality depends on whether the distribution is the
real or the complex Gaussian.
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Table 5 presents two sets of results: Panel (a) reports the estimation uncertainty when using

either the full spectrum or only BC frequencies. As before, estimation uncertainty is presented

as a percentage of the absolute value of the true parameter values. Panel (b) shows the efficiency

loss when using only BC frequencies, defined as the ratio of band spectral to full information

standard deviations or CRLBs. Starting with estimation uncertainty, the CRLBs are generally

very close to the TD estimator’s standard deviations. For more than half of the parameters, the

differences are under 10%, with the largest discrepancy being less than 25%. This occurs for σaT ,

where the TD estimator’s standard deviation is .132 compared to a CRLB of .1.

Except for two parameters (ρa and ρn), the CRLBs are smaller than the corresponding

MC-TD standard deviations, consistent with the information inequality (5.4). The CRLB-based

ranking of parameters by normalized estimation uncertainty closely aligns with the MC-TD

results, with a rank correlation of .98. For the MC-FD results, the rank correlation with the

CRLBs is slightly lower at .96. The numerical discrepancies are larger for the FD estimator,

exceeding 20% for most parameters and reaching 50% for b. All CRLBs remain below their

respective MC-FD standard deviations. In contrast, in the BC case, nine parameters violate

the information inequality. For two of these parameters (ρa and ρn), the CRLBs are more

than double the MC standard deviations. Significant discrepancies also arise for σn and κR,

with differences of approximately 70% and 37%, respectively. Despite these exceptions, the

CRLBs generally provide accurate predictions of estimation uncertainty in the band spectral

case, with discrepancies under 20% for most parameters. The CRLB also accurately predicts

the MC-implied parameter ranking by relative uncertainty, with a rank correlation of .96. As

expected, both the MC and CRLB-based results indicate greater estimation uncertainty when

information is restricted to the BC frequencies. This is reflected in relative efficiency values

greater than one, as shown in panel (b) of Table 5. For completeness, the table reports relative

efficiency values for MC-TD and MC-FD estimators, as well as those based on the finite sample

and asymptotic CRLBs. The latter, denoted as CRLB(∞), as computed using the asymptotic

band spectral and full information FIMs, as discussed earlier. While finite sample CRLBs provide

the preferred measure, the asymptotic loss predictions are very similar, being only slightly larger

across all parameters. In contrast, the MC-FD estimates of relative efficiency are lower than

the MC-TD estimates due to consistently larger standard deviations in the full spectrum case.

According to both MC and CRLB results, the efficiency loss is substantial, exceeding 100% for

most parameters. While the CRLB predictions closely match the MC losses for most parameters,

there are several notable exceptions. The MC results identify ρa, ρn, σiP , and σaP among the

parameters with smallest efficiency losses (40%− 80%), yet CRLB-based predictions for these

parameters are among the largest (150%−230%). Similarly, CRLB predicts much larger efficiency

losses for κR and σn (230% and 300%, respectively) compared to the MC results (120%).

What explains the few stark differences between predicted and estimated efficiency losses?

As notes earlier, and evident from the last two columns in panel (a) of Table 5, the band spectral

estimates of the six parameters listed above all violate the information inequality. In some

cases, the MC standard deviations are significantly smaller than their respective CRLBs. For

ρa and ρn this also occurs in the full information case, though to a much lesser extent.16 Thus,

16The MC-TD standard deviations of ρa and ρn are about 13% and 6% larger than their CRLBs, respectively,
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(b) Parameters with minor discrepancies between MC and CRLB-based efficiency loss values.

Figure 7: Each plot of the figure shows a histogram of the MC sampling distribution of the respective
parameter, along with two gaussian densities. The standard deviations of these densities correspond to the
CRLB (black) and either the MC-TD estimate (left, dotted-blue) or MC-BC estimate (right, dotted-red).
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Table 5: Estimation uncertainty and relative efficiency: MC vs CRLBs

(a) Estimation uncertainty (%) (b) Relative efficiency

all freqs BC freqs BC vs all freqs

parameter MC-TD MC-FD CRLB MC-BC CRLB MC-TD MC-FD CRLB CRLB(∞)

ν 25.8 31.1 23.5 53.8 49.5 2.1 1.7 2.1 2.3
α 3.5 4.0 3.4 6.0 5.5 1.7 1.5 1.6 1.7
ψ 22.0 26.7 18.5 52.5 48.5 2.4 2.0 2.6 3.1
φ 25.7 33.0 22.6 47.5 37.9 1.8 1.4 1.7 1.8
b 4.7 8.6 4.4 9.4 8.2 2.0 1.1 1.9 1.9
χ 2.5 3.1 2.4 5.8 5.3 2.3 1.9 2.2 2.4
κR 32.4 36.2 30.3 72.5 99.3 2.2 2.0 3.3 3.4
κπ 14.0 17.9 11.7 31.2 24.8 2.2 1.7 2.1 2.3
κy 58.6 85.5 44.6 115.3 106.7 2.0 1.3 2.4 3.0
ρa 63.5 74.2 71.4 88.5 229.0 1.4 1.2 3.2 3.4
ρn 85.3 103.7 90.0 139.9 295.1 1.6 1.3 3.3 3.4
ρi 23.3 29.2 23.0 61.2 75.6 2.6 2.1 3.3 3.4
ρc 3.8 4.5 3.5 7.8 8.6 2.1 1.7 2.4 3.0
ρg 7.2 7.6 5.9 22.2 15.2 3.1 2.9 2.6 2.9
ρm 8.5 9.3 7.6 22.3 16.7 2.6 2.4 2.2 2.3
ρξ 4.9 7.6 4.3 12.5 10.9 2.6 1.7 2.6 3.1
σaP 32.6 36.8 24.6 59.0 74.4 1.8 1.6 3.0 3.1
σaT 24.1 29.1 23.5 58.7 70.4 2.4 2.0 3.0 3.1
σn 25.4 31.0 23.3 54.5 92.6 2.2 1.8 4.0 4.2
σiP 52.9 60.2 41.5 85.7 105.3 1.6 1.4 2.5 2.9
σiT 27.0 38.0 23.1 77.4 61.6 2.9 2.0 2.7 2.8
σc 46.1 59.1 43.1 92.6 85.1 2.0 1.6 2.0 2.3
σg 5.6 5.9 5.5 13.9 11.7 2.5 2.3 2.1 2.2
σm 10.5 13.2 9.9 26.6 21.4 2.5 2.0 2.2 2.2
σξ 49.6 66.4 37.8 126.5 97.5 2.5 1.9 2.6 3.0

Note: Estimation uncertainty is reported in terms of MC standard deviation or CRLB as a percentage
of the modulus of the true parameter value. Relative efficiency is defined as the ratio of the standard
deviation or CRLB using BC frequencies only to that using all frequencies. All CRLBs are computed
with the exact FIM for T = 192 except in the column labeled CRLB(∞) where the bounds are computed
using the asymptotic FIM.

the differences arise primarily from disagreement between the two approaches in assessing of

estimation uncertainty in the band spectral case.

To explore this further, panel (a) of Figure 7 reproduces the MC sampling distributions of ρa,

ρn, and σiP , adding two Gaussian density curves for each parameter. Both densities are centered

on the true parameter values, with standard deviations corresponding to the CRLBs (in black)

and the respective MC-TD and MC-BC estimates (in blue and red, respectively). The plots

reveal two key reasons for the failure of the information inequality: (1) the low curvature of the

likelihood with respect to these parameters, and (2) the influence of prior restrictions on their

values. Consequently, the simulations underestimate sampling uncertainty for these parameters,

particularly in the band spectral case where information is scarcer.

This is most evident for ρa and ρn, where the CRLBs predict an almost flat likelihood

in the BC frequencies. While MC simulations confirm these predictions, they also reflect the

parameters’ prior bounds – (0, 1) for ρa and ρn, and [0,∞) for σiP . These restrictions cause

bunching of MC estimates at the parameter space boundaries and result in a smaller increase in

estimation uncertainty in the band spectral case compared to what would be expected based

whereas the MC-BC standard deviations exceed the corresponding band spectral CRLBs by over 150% and 110%.
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on the reduction in likelihood curvature alone. The other parameters with large discrepancies

between MC estimates and CRLB-predicted efficiency losses – κR, σaP , and σn – exhibit similar

patterns. This is illustrated in Figure 11 in Appendix B), where the same combination of reduced

curvature and prior constraints explains the observed discrepancies.

Panel (b) of Figure 7 demonstrates that prior restrictions have much weaker effects on

estimated uncertainty when the sample is sufficiently informative about a parameter. This

is shown for three parameters with bounds identical to those in panel (a): (0, 1) for χ and

α, and [0,∞) for σg. Since the MC estimates concentrate away from the parameter space

boundaries, the estimated standard deviations exceed their respective CRLBs, consistent with

the information inequality. The differences between predicted and realized estimation uncertainty

remain relatively small, particularly in the full information case, resulting in accurate – though

slightly underestimated – predictions of the band spectral estimator’s efficiency losses (see panel

(b) of Table 5).

The results for all parameters are reported in Figure 11 of Appendix B. They provide additional

evidence supporting the observation that the FIM-based predictions are highly accurate whenever

parameter constraints are non-binding during estimation. Since these constraints represent a

form of non-sample information, this suggests that the FIM-based approach might be more

reliable than the MC-based method for assessing the loss of sample information associated with

band spectral estimators. This possibility could be tested by increasing the amount of sample

information, such as by using larger sample sizes in the simulations. Larger samples should

reduce estimation uncertainty, thereby diminishing the relative influence of a priori parameter

restrictions. If the FIM-based predictions are indeed accurate, we should observe convergence

between the MC-based estimates and their CRLB-based counterparts as sample sizes frow.
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0.25
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1.25

(a) std(TD)
crlb(TD)

192 500 1000
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(b) std(BC)
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(c) std(BC)/std(TD)
crlb(BC)/crlb(TD)
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Figure 8: Each point represents the ratio of estimated and predicted uncertainty for a given parameter
and sample size, in either the full information case (panel (a)) or the BC frequencies case (panel (b)), or
the ratio of estimated to predicted relative efficiency (panel (c)). The SDs are estimated using 1000 MC
replications, while the CRLBs are computed from the expected FIM. In all cases, the largest discrepancies
between estimated and predicted values occur for the same two parameters, ρa, ρn, which are indicated in
bold.

I repeat the MC simulations exercise from Section 4.1 with larger samples of T = 500 and

T = 1000. Figure 8 shows how the ratios between estimated and predicted quantities evolve

– parameter uncertainty in both full information and bans-spectral cases (panels (a) and (b)),

and their respective relative efficiency values (panel (c)). In all cases, the values become more
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concentrated around 1 as T increases, indicating convergence between predictions and estimates.

Naturally, this convergence is more pronounced in the full information case compared to the

band spectral case.

In the band spectral case, however, several parameters continue to exhibit significantly lower

estimated uncertainty relative to the predicted values, even when T = 1000. This suggests

that parameter restrictions remain materially binding for these parameters. The most striking

examples are ρa and ρn, where the estimated uncertainty in the BC case is approximately 30%

smaller than the predicted uncertainty. As shown in the sampling distribution plots in the

Appendix (Figure 12), this discrepancy arises because the BC frequencies likelihood remains

very flat for these parameters even at T = 1000. Nonetheless, panel (b) of Figure 8 shows

a significant improvement compared to the original small-sample case, where the predicted

uncertainty exceeded the estimated uncertainty by more than a factor of two.

The observed convergence between estimated and predicted uncertainty results in convergence

between estimated and predicted relative efficiency values, as depicted in panel (c) of the figure.

Apart from the two aforementioned parameters, ρa and ρn, the largest discrepancy between

predicted and estimated values in either direction is at most 18%, indicating strong agreement.

This is further illustrated in Figure 9, which compares estimated and predicted relative efficiency

values for sample sizes of T = 192 and T = 1000.

When T = 1000, the largest remaining discrepancy, after ρa and ρn, is for σaP , where the

estimated relative efficiency is 3.7, compared to the predicted value of 3.1. On the opposite

extreme, σn exhibits a predicted loss of 4.15, exceeding the estimated value of 3.7. Overall, the

rank correlation between estimated and predicted relative efficiency improves significantly from

.16 when T = 192 to .76 when T = 1000, indicating better concordance between predictions and

estimates as the sample size increases. At the same time, the sample size has minimal impact

on the magnitude of the predicted relative efficiency values. For instance, the rank correlation

between CRLB-192 and CRLB-1000 is .95. This suggests that the FIM-based approach reliably

captures the efficiency losses incurred by different parameters under band spectral estimation. I

apply this insight in the next section to examine what information is preserved and what is lost

when estimating the model using only business cycle frequencies.

ν α ψ ϕ b χ κR κπ κy ρa ρn ρi ρc ρg ρm ρξ σaP σaT σn σiP σiT σc σg σm σξ

parameter

0

1

2
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4 MC-192
CRLB-192

MC-1000
CRLB-1000

Figure 9: Predicted (CRLB-T) and estimated (MC-T) relative efficiency for T = 192 and T = 1000.
Relative efficiency is defined as the ratio of the MC standard deviation or CRLB obtained using only BC
frequencies to that obtained using all frequencies.
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6 Information in (and not in) the business cycle frequencies

The BC frequencies account for less than 30% of all frequency domain observations. Thus, it is

not surprising that the band spectral estimation results in significant efficiency losses compared

to the full information case. At the same time, as discussed earlier, some parameters experience

much greater losses than others. For instance, the efficiency losses for parameters such as σn,

ρi, ρn, ρa, and κR are more than twice as large as those for α, φ, and b. The explanation

for these differences must be that, for the parameters in the former group, either the low or

high frequencies – or both – contribute a lot of information that is not captured within the BC

frequencies alone.

The FIM formalism can help clarify which explanation is correct. Figure 10 compares the

predicted relative efficiency of three band spectral estimators — based on BC frequencies only,

Low-plus-BC frequencies, and High-plus-BC frequencies -– relative to the full information case.17

The results show that the large information losses in the BC-frequency-only case primarily

stems from the absence of high-frequency information. Specifically, for σn, ρi, ρn, ρa, and κR,

the high-plus-BC frequencies estimator is nearly as efficient as the full information one. High

frequencies also account for the bulk of the missing information for most of the remaining shock

volatility parameters – σaP , σaT , σiT , σg, and σm. In contrast, only a few parameters derive

significant amount of unique information from the low frequencies, with ψ, κy, ρc, σiP being the

most notable exceptions.

ν α ψ ϕ b χ κR κπ κy ρa ρn ρi ρc ρg ρm ρξ σaP σaT σn σiP σiT σc σg σm σξ
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BC+Low
BC+High

Figure 10: Predicted relative efficiency of the three band spectral estimators. The relative efficiency is
defined as the ratio of the CRLB value using a specific frequency band to the CRLB value using all
frequencies. The sample size is T = 192.

Why do some parameters benefit more from information in the higher frequencies whereas

others are better informed by frequencies at the lower end of the spectrum? Macro modelers

may be able to develop intuition about the answer to this question by considering how the

functional roles of different parameters in a model translate to the statistical properties of the

model variables. For example, parameters that determine a model’s steady state are likely to

derive their information primarily from lower frequencies. Conversely, parameters governing

the volatility of exogenous disturbances tend to be better informed through high-frequency

information.

Qualitative explanations based on intuition and experience, while useful, have their limitations

17Figure 13 compares the predicted relative efficiency in the Low, BC, and High frequency band cases.
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and may be incorrect. In modern macroeconomic models, parameters often cannot be neatly

categorized as predominantly influencing a specific band of frequencies. Even parameters directly

linked to steady states or volatilities are typically related to – and therefore derive information

from – frequencies beyond just the lower or higher ends of the spectrum. For instance, we

observe that the efficiency gains from incorporating low-frequency information exceed those

from high-frequency information for σiP , σc, and σξ. This contrasts with the other volatility

parameters, for which the results align with the previously mentioned intuition. A key challenge

in informal analysis is properly accounting for parameter interdependence. Even when it is

possible to establish that a parameter affects mainly, for instance, the long-run dynamics, it

is usually much harder to determine how distinct the effect is from that of other parameters.

Due to parameter interdependence, the dimensions of data most sensitive to a parameter are

not necessarily the most informative ones. Ignoring these complexities can lead to misleading

conclusions.

The FIM-based approach offers a formal framework to address these challenges. The marginal

CRLB for any parameter θi can be decomposed into two factors: one capturing the likelihood

sensitivity to θi, and another reflecting parameter interdependence. More formally, it can be

shown that (see Iskrev (2010a,b))

crlb(θi) =
1√

{IT (θ)}ii︸ ︷︷ ︸
crlb(θi|θ−i)

× 1√
1−R2

i︸ ︷︷ ︸
SIF(θi)

(6.1)

where crlb(θi|θ−i) is the conditional CRLB of θi given all other parameters θ−i = {θj | j ̸= i},
which depends only on the inverse sensitivity of the likelihood function to θi. The second term,

the standard deviation inflation factor (SIF), is an increasing function of the multiple correlation

coefficient Ri between the scores with respect to θi and θ−i.
18

The interpretation of (6.1) is straightforward. Like the marginal CRLB, the conditional

CRLB represents the predicted estimation uncertainty for θi when all other parameters are known.

In this case, there is no parameter interdependence, and the conditional CRLB depends solely

on the sensitivity of the likelihood function with respect to θi: higher sensitivity implies lower

conditional uncertainty, and vice versa.The effect of parameter interdependence is captured by

SIF(θi). The more similar the effect of θi on the likelihood to that of other estimated parameters,

the less precise its estimation will be. Since R2
i ∈ [0, 1], SIF(θi) is bounded from below by 1,

where no parameter interdependence affects θi and the marginal CRLB equals the conditional. At

R2
i = 1, θi becomes unidentified as it cannot be distinguished from a combination of parameters

in θ−i.

The decomposition in (6.1) offers a straightforward explanation of why certain frequencies

are predicted to be more informative than others: it is because of higher sensitivity, lower

parameter interdependence, or a combination of both. Table 6 illustrates this by presenting

18In linear regression context, this is equivalent to the square root of the variance inflation factor (VIF) introduced
by Marquaridt (1970), where Ri is the multiple correlation coefficient between the i-th regressor and the other
regressors. The term SIF appears in Fox and Monette (1992) as standard-error inflation factor and is similarly
defined as the square root of the VIF.
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Table 6: Decomposing predicted relative efficiency

parameter low BC high

ν 3.4 = 3.0 × 1.13 2.1 = 1.7 × 1.22 3.8 = 1.4 × 2.80
α 1.7 = 2.3 × 0.73 1.6 = 1.7 × 0.94 2.8 = 1.4 × 1.93
ψ 1.8 = 3.3 × 0.52 2.6 = 1.8 × 1.45 4.1 = 1.3 × 3.15
φ 3.9 = 5.6 × 0.69 1.7 = 1.8 × 0.91 2.5 = 1.2 × 2.03
b 6.8 = 4.9 × 1.40 1.9 = 1.9 × 0.98 2.2 = 1.2 × 1.78
χ 4.9 = 3.6 × 1.38 2.2 = 2.0 × 1.12 2.6 = 1.2 × 2.11
κR 12.5 = 5.5 × 2.28 3.3 = 2.4 × 1.34 1.8 = 1.1 × 1.64
κπ 4.3 = 4.2 × 1.03 2.1 = 1.9 × 1.11 2.3 = 1.2 × 1.87
κy 4.2 = 4.4 × 0.95 2.4 = 1.9 × 1.27 3.6 = 1.2 × 2.93
ρa 42.0 = 24.7 × 1.70 3.2 = 3.2 × 1.01 2.2 = 1.1 × 2.06
ρn 16.9 = 2.2 × 7.71 3.3 = 1.5 × 2.15 2.6 = 1.6 × 1.56
ρi 11.4 = 3.4 × 3.35 3.3 = 1.2 × 2.65 2.8 = 2.0 × 1.44
ρc 3.0 = 3.1 × 0.98 2.4 = 1.9 × 1.29 3.8 = 1.3 × 2.97
ρg 8.2 = 1.2 × 6.74 2.6 = 2.3 × 1.14 6.9 = 2.7 × 2.55
ρm 13.6 = 12.0 × 1.14 2.2 = 2.3 × 0.95 2.2 = 1.1 × 1.95
ρξ 3.9 = 2.4 × 1.59 2.6 = 1.9 × 1.37 4.4 = 1.4 × 3.25
σaP 18.5 = 4.0 × 4.59 3.0 = 1.9 × 1.58 1.4 = 1.2 × 1.18
σaT 88.2 = 52.2 × 1.69 3.0 = 3.1 × 0.95 1.7 = 1.1 × 1.65
σn 25.9 = 2.9 × 9.04 4.0 = 1.5 × 2.58 1.3 = 1.5 × 0.90
σiP 1.7 = 1.3 × 1.34 2.5 = 2.1 × 1.22 3.9 = 3.0 × 1.29
σiT 10.0 = 7.1 × 1.41 2.7 = 1.9 × 1.38 2.4 = 1.2 × 2.03
σc 1.9 = 4.0 × 0.47 2.0 = 1.8 × 1.07 3.8 = 1.2 × 3.04
σg 27.4 = 4.1 × 6.74 2.1 = 1.9 × 1.15 3.2 = 1.2 × 2.56
σm 7.1 = 4.5 × 1.58 2.2 = 1.9 × 1.14 1.7 = 1.2 × 1.35
σξ 3.3 = 4.0 × 0.83 2.6 = 1.8 × 1.40 4.1 = 1.2 × 3.26

Note: The predicted relative efficiency is decomposed using (6.1) into a relative sensitivity
factor and a relative interdependence factor.

the decomposition of predicted relative efficiency across the low, BC, and high-frequency bands

relative to the full information case.19 Several results from the table are worth highlighting.

First, the decompositions confirm the earlier observation that sensitivity and informativeness

are distinct. For 16 of the 25 parameters, the frequency bands with the lowest marginal and

conditional CRLBs differ. Notably, for ψ and σc, low frequencies are most informative yet least

sensitive, while high frequencies exhibit the opposite pattern. Second, the first term in the

decomposition is always greater than 1, while the second term can be less than 1. In other words,

there is always some loss of information due to lower sensitivity in the band spectral case relative

to the full information.20 The effect of parameter interdependence can go in either direction,

and, in particular, the SIF may be smaller in certain frequency bands than in the full spectrum.

This occurs when a parameter’s impact on the likelihood is markedly less correlated with that of

other parameters in certain parts of the spectrum than in others. The most notable examples are

the aforementioned ψ and σc whose low frequency SIF values are approximately half their full

spectrum counterparts.21 Third, the decompositions help develop a more nuanced understanding

of the relative efficiency of the BC-based band-spectral estimator. For example, the substantial

efficiency losses for σn, ρn, and ρi primarily result from stronger parameter interdependence

19Decompositions for the BC+Low and the BC+High frequency bands are provided in Table 9 in Appendix C.
20In principle, the relative sensitivity factor for a given frequency band could equal 1 if the parameter’s effect on

the likelihood is entirely confined to that band.
21In terms of correlation coefficients, ψ shows values of .933 (low frequencies) and .982 (full spectrum), while

σc shows .965 and .992, respectively. Both parameters have multiple correlation coefficients near .999 in the
high-frequency band.
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in the BC frequencies, compared to the full spectrum. In contrast, ρa and σaT show similar

losses, but due to lower sensitivity in the BC band. Low sensitivity is also the dominant factor

in the case of α, ψ, b, and ρm, all of which are less affected by interdependence issues in the BC

frequency band compared to the full spectrum. For all other parameters, both factors contribute

substantially to the band spectral estimator’s reduced efficiency.

Lastly, the results in Table 6 clarify the effects of parameter restrictions in estimation. Specif-

ically, because of parameter interdependence, binding restrictions on a parameter’s permissible

values reduce estimation uncertainty not only for that parameter but also for other related

parameters. This explains why the information inequality may fail to hold, even in large samples,

for parameters whose own constraints are not binding (see panel (b) of Figure 8). A notable

example is the pair ρn and σn, whose scores have a pairwise correlation coefficient of .92 in the

BC frequencies.22 Since the constraints on ρn remain strongly binding in the band spectral case,

the estimation uncertainty of σn is also reduced, even though its own restrictions are less relevant

when T = 1000 (see Figure 12 in Appendix B). However, this does not occur to the same extent

in the full spectrum, as the pairwise correlation coefficient there is only .43. Consequently, as

shown in Figure 9 that σn is, in the large sample case, among the few parameters for which the

CRLB-predicted efficiency loss is greater than the MC-estimated one.

The preceding discussion illustrates two complementary uses of the FIM-based analysis:

(1) determining which frequency bands are most informative about each parameter, and (2)

explaining why this is the case. Of course, the results must be interpreted only as predictions that

are conditional on the model being the true DGP for all frequencies. As in the previous section,

the validity and accuracy of these predictions can be tested. Specifically, the results in Figure

10 can be compared with MC estimates of the relative efficiency loss of the three band-spectral

estimators shown in the figure. Similarly, simulations can be used to test the predictions in Table

6 regarding the relative sensitivity of different frequency bands with respect to each parameter.

In this latter case, the simulations should be conducted by estimating parameters one at a time,

i.e. fixing all other parameters at their true values and treating them as known during the

estimation.

Appendix C provides a comprehensive overview of the results from such simulations. As in

Section 5.2, the overall conclusion is that the CRLBs are generally very reliable predictors of

the relative loss of efficiency. In the vast majority of cases, the MC results fully align with the

predictions in Figure 10 regarding whether the low or high frequencies contribute more of the

information missing in the BC-frequency-only case. The predictions are also generally accurate

in terms of the magnitude of efficiency losses. However, as before, prior restrictions on parameter

values sometimes lead to underestimation of uncertainty and, consequently, distort MC-based

efficiency losses. As in Section 5.2, increasing the sample size to 1000 mitigates the effects of

these restrictions and improves agreement between predicted and estimated efficiency losses.

The results in Appendix C also present concrete evidence for another source of distortions in

the MC results stemming, from the misspecified nature of the Whittle likelihood function. Under

correct specification, adding more frequencies to the band spectral estimator cannot increase

estimation uncertainty. However, for several parameters in Figure 14 of the Appendix (see ρn

22See Section D.1 in the online Appendix for details on score collinearity for all parameters and frequency bands.
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and σn when T = 192, and ρi and σ
T
i when T = 1000), the BC-frequency-only estimator is more

efficient than the BC+Low frequency estimator. Even more striking examples of this abnormality

can be seen in the conditional estimation results for ν, α, ψ, ρi, and σξ, where the BC+High

frequency estimator is significantly less efficient than the BC-frequency-only estimator (see Figure

18 of the Appendix). This is in sharp contrast to the CRLB predictions for these parameters,

according to which the BC+High frequency estimator is nearly as efficient as the full information

estimator. While the FIM-based predictions can be inaccurate for various reasons, obtaining less

precise estimates as more information is used can only be explained by optimizing the wrong

objective function.23

Comparing the predicted and estimated conditional uncertainty of the aforementioned pa-

rameters, rather than the efficiency loss, shows that the CRLB predictions are very accurate for

all estimators except the one based on the BC+High frequency band. For this estimator, the

estimated uncertainty is much larger than predicted (see Figure 23 in the Appendix). Following

the earlier discussion of the conditional CRLB, an obvious explanation for this difference is that

the Whittle likelihood is misspecified in ways that make it considerably less sensitive to these pa-

rameters in the high-frequency region of the sample. To verify this conjecture, I employ the exact

band spectral likelihood function discussed toward the end of Section 4.2. Note that although

a naive evaluation of the function is computationally very demanding, estimating parameters

individually remains feasible within a reasonable amount of time. The results, presented in

Section C.1.3 of Appendix C, show nearly perfect alignment between CRLB predictions and

MC estimates across all frequency bands, both in terms of estimation uncertainty and efficiency

losses.

7 Concluding Comments

In this paper, I have focused on two key issues arising in the application of band spectral methods

to estimate business cycle models: (1) the finite-sample distortions due to the approximate nature

of the Whittle likelihood, currently the predominant method for estimating economic models in

the frequency domain; and (2) the potentially significant information loss when estimation relies

on only a subset of frequencies. The results from extensive Monte Carlo (MC) simulations, using

the model of Angeletos et al. (2018) as a data-generating process, showed that the band spectral

estimator exhibits considerable bias and efficiency loss compared to the full information case.

Whereas the bias is caused by the poor performance of the Whittle approximation when data

is persistent, the loss of precision is mainly due to the low information content of the business

cycle frequencies. In addition to MC analysis, I assessed the reliability of analytical FIM-based

predictions of estimation uncertainty and efficiency loss. The results suggest that this approach

can serve as a useful alternative to conducting MC simulations, both for identifying the most

informative parts of the spectrum and for understanding why certain frequency bands provide

more information for some parameters than others.

The findings presented in the paper have several implications for the broader literature. First,

when model misspecification is not a concern and the choice is merely between full information

23See Meng and Xie (2014).
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estimation in the time domain versus the frequency domain, the time domain approach is clearly

superior. Although the Whittle likelihood distortions may be smaller with less persistent data,

approximation errors are unlikely to vanish entirely for the sample sizes commonly used in

business cycle research. Second, obtaining different results when estimating a model using

different frequency bands, or with time-domain methods, does not necessarily indicate model

misspecification, contrary to the prevailing wisdom among empirical macroeconomists. An

alternative explanation for such discrepancies is that both the size of the Whittle likelihood

distortions and the impact of information loss typically vary across parameters and across parts

of the spectrum. Third, any form of out-of-sample information on the estimated parameters – in

the form of a prior distribution, theoretical restrictions on the parameter space, or assigned values

of calibrated parameters, will likely have a much greater impact on band spectral estimators

compared to full information ones. This is important to keep in mind when comparing results

obtained using different estimation methods. Finally, frequency-domain FIM analysis, like the

one developed in this paper, can also benefit researchers who estimate structural macro models in

the time domain. In particular, quantifying the information content of different frequency bands

will enhance their understanding of where in the data, according to a given model, information

about parameters predominantly comes from. This, in turn, will make the estimation of such

models more transparent.

There are several promising directions for future research. A key priority should be to develop

more reliable methods for band spectral estimation of macroeconomic models. One approach

could be to devise a computationally efficient implementation of the exact likelihood estimator

outlined in this paper. Another is to improve upon the standard Whittle likelihood approximation,

for instance along the lines of Sykulski et al. (2019). Beyond refining the conventional band

spectral analysis, it may also be worthwhile to explore methods that target different frequency

bands for different variables. Such estimators would allow for more efficient use of sample

information, particularly in cases where the frequency-specific mismatch between model and

data varies across observed variables. Similarly, the FIM-based analysis could be extended

to incorporate variable-specific frequency bands, thereby providing a more nuanced view of

the interplay between parameter sensitivity and interdependence and enhancing researchers’

understanding of the origins of parameter information. Finally, it is important to investigate

how model-dependent or parameter-specific the conclusions I have reached in this study are. As

with any simulation-based analysis, it is unrealistic to expect that the results will be uniformly

applicable under all circumstances. Conducting additional simulations with diverse models and

parameter configurations would be valuable for assessing the robustness and generalizability of

my findings.
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Appendix

A Appendix to Section 2

A.1 Angeletos et al. (2018) model

Table 7: Parameter values, ACD (2018) model

parameter posterior median

ψ utilization elasticity 0.500
ν inverse labor supply elasticity 0.282
α capital share 0.255
φ investment adjustment costs 3.312
b habit persistence 0.758
χ Calvo parameter 0.732
κR Taylor rule smoothing 0.198
κπ Taylor rule inflation 2.271
κy Taylor rule output 0.121
ρm AR mon. policy 0.647
ρa AR transitory TFP component 0.412
ρn AR news 0.224
ρi AR transitory investment-specific technology 0.374
ρc AR preference 0.888
ρg AR government spending 0.786
ρξ AR confidence 0.833
σPa std. permanent TFP component 0.406
σTa std. transitory TFP component 0.347
σn std. news 0.378
σPi std. permanent investment-specific technology 0.610
σTi std. transitory investment-specific shocks 5.805
σc std. preference 0.357
σg std. government spending 1.705
σξ std. confidence 0.613
σm std. mon. policy 0.313
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B Appendix to Section 5

This appendix contains additional results complementing Section 5 in the main text.

B.1 Results for the baseline parametrization

Table 8: Estimation uncertainty and efficiency loss: MC vs CRLBs

estimation uncertainty efficiency loss

all freqs BC freqs BC vs all freqs

parameter MC-TD MC-FD CRLB MC CRLB MC-TD MC-FD CRLB CRLB(∞)

ν 26.7 39.3 25.7 76.9 55.6 2.9 2.0 2.2 2.3
α 4.0 6.0 3.8 7.4 6.3 1.8 1.2 1.6 1.7
ψ 24.0 31.7 21.7 49.2 57.6 2.1 1.6 2.7 3.0
φ 26.2 44.7 24.8 48.8 42.6 1.9 1.1 1.7 1.8
b 4.2 13.7 4.0 13.1 7.6 3.1 1.0 1.9 2.0
χ 2.7 5.7 2.6 8.2 6.4 3.0 1.5 2.4 2.6
κR 35.0 44.3 33.8 76.2 118.6 2.2 1.7 3.5 3.7
κπ 15.6 25.2 14.4 42.2 32.7 2.7 1.7 2.3 2.5
κy 48.2 131.8 44.1 96.7 106.2 2.0 0.7 2.4 3.0
ρa 54.4 71.0 57.1 91.4 185.6 1.7 1.3 3.3 3.4
ρn 77.4 126.2 85.7 116.3 279.1 1.5 0.9 3.3 3.4
ρi 19.8 30.0 19.7 65.7 63.7 3.3 2.2 3.2 3.4
ρc 3.5 5.7 3.5 7.1 8.9 2.0 1.2 2.5 3.2
ρg 7.3 11.4 6.2 28.1 15.4 3.9 2.5 2.5 2.8
ρm 8.8 11.1 8.0 23.9 18.1 2.7 2.1 2.3 2.4
ρξ 4.8 12.4 4.4 13.1 11.4 2.7 1.1 2.6 3.0
σaP 22.5 105.7 18.5 94.5 73.1 4.2 0.9 4.0 4.1
σaT 19.2 55.3 18.4 71.0 66.2 3.7 1.3 3.6 3.7
σn 23.2 38.2 23.5 100.9 109.2 4.3 2.6 4.6 4.8
σiP 56.7 78.1 44.1 122.5 208.5 2.2 1.6 4.7 6.1
σiT 28.2 46.9 26.6 69.2 66.6 2.5 1.5 2.5 2.6
σc 42.2 301.9 44.1 136.6 86.0 3.2 0.5 2.0 2.2
σg 5.5 7.3 5.5 16.0 11.9 2.9 2.2 2.2 2.2
σm 11.3 17.6 11.2 34.3 25.0 3.0 1.9 2.2 2.4
σξ 49.2 53.1 42.3 82.8 107.8 1.7 1.6 2.6 2.8

Note: Baseline parametrization. Estimation uncertainty is reported as the MC standard deviation or
CRLB, expressed as percentage of the absolute value of the true parameter value. Efficiency loss is
defined as the ratio of the standard deviations or CRLBs obtained using BC frequencies only vs. using
all frequencies. CRLBs are computed with the exact FIM for T = 192 whereas CRLB(∞) is computed
with the asymptotic FIM.
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B.2 MC vs CRLBs: alternative parametrization
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Figure 11: Each plot of the figure shows a histogram of the MC sampling distribution for the respective
parameter, along with a gaussian density curve centered at the true parameter value and with a standard
deviation equal to the CRLB. The sample size is T = 192.
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Figure 12: See the Notes to Figure 11. The sample size is T = 1000.
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C Appendix to Section 6

This appendix contains additional results complementing Section 6 in the main text.

ν α ψ ϕ b χ κR κπ κy ρa ρn ρi ρc ρg ρm ρξ σaP σaT σn σiP σiT σc σg σm σξ

parameter

0

1

2

3

4
Low
BC
High

Figure 13: Log of the predicted relative efficiency of different band-spectral estimators. The relative
efficiency is defined as the ratio of the CRLB value using a specific band of frequencies to the CRLB value
using all frequencies. The sample size is T = 192.

Table 9: Decomposition of the predicted relative efficiency

parameter Low BC High BC+Low BC+High

ν 3.4 = 3.0× 1.13 2.1 = 1.7× 1.22 3.8 = 1.4× 2.80 1.3 = 1.5× 0.89 1.5 = 1.1× 1.37
α 1.7 = 2.3× 0.73 1.6 = 1.7× 0.94 2.8 = 1.4× 1.93 1.1 = 1.4× 0.81 1.4 = 1.1× 1.21
ψ 1.8 = 3.3× 0.52 2.6 = 1.8× 1.45 4.1 = 1.3× 3.15 1.2 = 1.6× 0.74 1.9 = 1.0× 1.77
φ 3.9 = 5.6× 0.69 1.7 = 1.8× 0.91 2.5 = 1.2× 2.03 1.3 = 1.7× 0.73 1.2 = 1.0× 1.19
b 6.8 = 4.9× 1.40 1.9 = 1.9× 0.98 2.2 = 1.2× 1.78 1.5 = 1.8× 0.85 1.2 = 1.0× 1.15
χ 4.9 = 3.6× 1.38 2.2 = 2.0× 1.12 2.6 = 1.2× 2.11 1.5 = 1.7× 0.88 1.3 = 1.0× 1.22
κR 12.5 = 5.5× 2.28 3.3 = 2.4× 1.34 1.8 = 1.1× 1.64 2.8 = 2.2× 1.24 1.1 = 1.0× 1.08
κπ 4.3 = 4.2× 1.03 2.1 = 1.9× 1.11 2.3 = 1.2× 1.87 1.5 = 1.7× 0.86 1.3 = 1.0× 1.24
κy 4.2 = 4.4× 0.95 2.4 = 1.9× 1.27 3.6 = 1.2× 2.93 1.2 = 1.7× 0.71 1.9 = 1.0× 1.82
ρa 42.0 = 24.7× 1.70 3.2 = 3.2× 1.01 2.2 = 1.1× 2.06 2.7 = 3.1× 0.85 1.1 = 1.0× 1.13
ρn 16.9 = 2.2× 7.71 3.3 = 1.5× 2.15 2.6 = 1.6× 1.56 2.8 = 1.3× 2.20 1.2 = 1.1× 1.03
ρi 11.4 = 3.4× 3.35 3.3 = 1.2× 2.65 2.8 = 2.0× 1.44 2.8 = 1.2× 2.37 1.1 = 1.0× 1.05
ρc 3.0 = 3.1× 0.98 2.4 = 1.9× 1.29 3.8 = 1.3× 2.97 1.1 = 1.6× 0.70 2.0 = 1.1× 1.86
ρg 8.2 = 1.2× 6.74 2.6 = 2.3× 1.14 6.9 = 2.7× 2.55 1.3 = 1.1× 1.21 1.8 = 1.7× 1.05
ρm 13.6 = 12.0× 1.14 2.2 = 2.3× 0.95 2.2 = 1.1× 1.95 1.7 = 2.3× 0.77 1.2 = 1.0× 1.17
ρξ 3.9 = 2.4× 1.59 2.6 = 1.9× 1.37 4.4 = 1.4× 3.25 1.3 = 1.5× 0.85 1.9 = 1.1× 1.74
σaP 18.5 = 4.0× 4.59 3.0 = 1.9× 1.58 1.4 = 1.2× 1.18 2.8 = 1.7× 1.63 1.0 = 1.0× 1.01
σaT 88.2 = 52.2× 1.69 3.0 = 3.1× 0.95 1.7 = 1.1× 1.65 2.8 = 3.1× 0.88 1.1 = 1.0× 1.07
σn 25.9 = 2.9× 9.04 4.0 = 1.5× 2.58 1.3 = 1.5× 0.90 3.5 = 1.4× 2.58 1.1 = 1.1× 0.99
σiP 1.7 = 1.3× 1.34 2.5 = 2.1× 1.22 3.9 = 3.0× 1.29 1.1 = 1.1× 1.05 1.9 = 1.7× 1.11
σiT 10.0 = 7.1× 1.41 2.7 = 1.9× 1.38 2.4 = 1.2× 2.03 2.3 = 1.9× 1.23 1.2 = 1.0× 1.16
σc 1.9 = 4.0× 0.47 2.0 = 1.8× 1.07 3.8 = 1.2× 3.04 1.1 = 1.7× 0.67 1.5 = 1.0× 1.47
σg 27.4 = 4.1× 6.74 2.1 = 1.9× 1.15 3.2 = 1.2× 2.56 2.1 = 1.7× 1.22 1.1 = 1.0× 1.06
σm 7.1 = 4.5× 1.58 2.2 = 1.9× 1.14 1.7 = 1.2× 1.35 1.8 = 1.7× 1.02 1.1 = 1.0× 1.11
σξ 3.3 = 4.0× 0.83 2.6 = 1.8× 1.40 4.1 = 1.2× 3.26 1.3 = 1.7× 0.79 1.7 = 1.0× 1.68

Note: The predicted relative efficiency is decomposed using (6.1) into a relative parameter sensitivity factor
and a relative parameter interdependence factor.
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C.1 More Monte Carlo simulations

This section compares the CRLB-based predictions with the MC estimates of the efficiency loss
for three band spectral estimators: using BC, BC+Low, and BC+High frequencies. Subsection
C.1.1 presents the results for the case of joint estimation of all model parameters, while Subsection
C.1.2 shows the results for the conditional case, where one parameter is estimated at a time.

C.1.1 Joint estimation: BC vs BC+Low vs BC+High
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Figure 14: Predicted (top panel of each subplot) and MC-estimated (bottom panel) relative efficiency of
the three band spectral estimators. The relative efficiency is defined as the ratio of the MC standard
deviation or CRLB using a band of frequencies to the value using all frequencies.
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Figure 15: Joint estimation using the Whittle likelihood. The figure shows MC sampling distributions
along with gaussian densities centered on the true values, with standard deviations equal to the marginal
CRLB. The sample size is T = 192.
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Figure 16: Continue Figure 15.
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Figure 17: Ratios of Whittle-based unconditional MC standard deviations to unconditional CRLBs. TD
represents the exact time domain MLE, while the other three are band spectral Whittle estimators using
frequencies from the BC, BC+Low, and BC+High frequency bands.
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C.1.2 Conditional estimation: BC vs BC+Low vs BC+High

The following results are for conditional estimation, where only one parameter is estimated at
a time while the others are treated as known. The predicted efficiency loss is based on the
conditional CRLBs in the band spectral and full information cases (see equation (6.1)).
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Figure 18: Predicted (top panel of each subplot) and MC-estimated (bottom panel) relative efficiency of
the three band spectral estimators.
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Figure 19: Conditional estimation using the Whittle likelihood. The figure shows MC sampling
distributions and gaussian densities centered on the true values with standard deviation equal to the
conditional CRLB. The sample size is T = 192.
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Figure 20: Continue Figure 19.
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Figure 21: See the note to Figure 19. The sample size is T = 1000.
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Figure 22: Continue Figure 21.
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Figure 23: Ratios of Whittle-based conditional MC standard deviations to conditional CRLBs. TD
represents the exact time domain MLE, while the other three are band spectral Whittle estimators using
frequencies from the BC, BC+Low, and BC+High frequency bands.
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C.1.3 Conditional estimation using the exact band spectral likelihood: BC vs
BC+Low vs BC+High

The following results are for conditional estimation using the exact band spectral likelihood
function instead of the Whittle approximation.
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Figure 24: Predicted (top panel of each subplot) and MC-estimated (bottom panel) relative efficiency of
the three band spectral estimators.

55



0.0 0.5 1.0
0

1

2 ρa

0.0 0.5
0

2

4
ρn

0.2 0.4
0

5
ρi

0.88 0.90
0

25

50 ρc

0.50 0.75 1.00
0

2

ρg

0.0 0.5 1.0
0

1

2 ρa

0.0 0.5
0

2
ρn

0.2 0.4
0

5
ρi

0.88 0.90
0

25

50
ρc

0.50 0.75 1.00
0

5
ρg

0.0 0.5 1.0
0

1

2 ρa

0.0 0.5
0

2
ρn

0.2 0.4
0

5

ρi

0.88 0.90
0

50

100
ρc

0.50 0.75 1.00
0

2

4 ρg

0.80 0.85
0

10

20 ρξ

0.25 0.50
0

2

4 σaP

0.0 0.5
0

1

2
σaT

0.2 0.4 0.6
0

2

4 σn

0 1
0

1

2
σiP

0.80 0.85
0

10

20
ρξ

0.25 0.50
0

2

4 σaP

0.0 0.5
0

1

2
σaT

0.2 0.4 0.6
0.0

2.5

5.0 σn

0 1
0

1

σiP

0.80 0.85
0

20

40 ρξ

0.25 0.50
0

5
σaP

0.0 0.5
0

5

10
σaT

0.2 0.4 0.6
0

5
σn

0 1
0

1
σiP

4 6
0.00

0.25

0.50 σiT

0.3 0.4
0

5

10 σc

1.5 2.0
0

1

2 σg

0.6 0.8
0.0

2.5

5.0
σξ

0.5 0.6
0

5

10
ψ

4 6
0.00

0.25

0.50
σiT

0.3 0.4
0

5

10 σc

1.5 2.0
0

1

2
σg

0.6 0.8
0

5

σξ

0.5 0.6
0

10
ψ

4 6
0.0

0.5

1.0
σiT

0.3 0.4
0

10

20 σc

1.5 2.0
0

2

4 σg

0.6 0.8
0

5

10 σξ

0.5 0.6
0

10

20 ψ

BC
BC

+Low
BC

+H
igh

BC
BC

+Low
BC

+H
igh

BC
BC

+Low
BC

+H
igh

Figure 25: Conditional estimation using the exact likelihood. The figure shows MC sampling
distributions and gaussian densities centered on the true values with standard deviation equal to the
conditional CRLB. The sample size is T = 192.
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Figure 26: Continue Figure 25
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Figure 27: See the note to Figure 25. The sample size is T = 500.
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Figure 28: Continue Figure 27
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Figure 29: Ratios of exact conditional MC standard deviations to conditional CRLBs. TD represents
the exact time domain MLE, while the other three are exact band spectral likelihood estimators using
frequencies from the BC, BC+Low, and BC+High frequency bands.

60


	1 Introduction
	2 The Model
	2.1 Linearized equilibrium conditions

	3 The Whittle likelihood
	3.1 General case
	3.2 Linearized DSGE models

	4 Simulation Study
	4.1 Setup
	4.2 Results: baseline parametrization
	4.3 Results: alternative parametrization

	5 Can the loss of information be predicted?
	5.1 Fisher information matrix and Cramér-Rao lower bounds
	5.2 Monte Carlo results vs CRLB predictions

	6 Information in (and not in) the business cycle frequencies
	7 Concluding Comments
	References
	A Appendix to Section 2
	A.1 ACD2018 model

	B Appendix to Section 5
	B.1 Results for the baseline parametrization
	B.2 MC vs CRLBs: alternative parametrization

	C Appendix to Section 6
	C.1 More Monte Carlo simulations
	C.1.1 Joint estimation: BC vs BC+Low vs BC+High
	C.1.2 Conditional estimation: BC vs BC+Low vs BC+High
	C.1.3 Conditional estimation using the exact band spectral likelihood: BC vs BC+Low vs BC+High



